首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13018篇
  免费   1677篇
  国内免费   814篇
电工技术   436篇
综合类   886篇
化学工业   4688篇
金属工艺   1319篇
机械仪表   1233篇
建筑科学   246篇
矿业工程   166篇
能源动力   232篇
轻工业   212篇
水利工程   14篇
石油天然气   81篇
武器工业   173篇
无线电   2183篇
一般工业技术   2633篇
冶金工业   449篇
原子能技术   61篇
自动化技术   497篇
  2024年   17篇
  2023年   346篇
  2022年   410篇
  2021年   472篇
  2020年   534篇
  2019年   468篇
  2018年   459篇
  2017年   518篇
  2016年   441篇
  2015年   409篇
  2014年   573篇
  2013年   573篇
  2012年   766篇
  2011年   887篇
  2010年   592篇
  2009年   685篇
  2008年   604篇
  2007年   946篇
  2006年   877篇
  2005年   737篇
  2004年   700篇
  2003年   572篇
  2002年   468篇
  2001年   448篇
  2000年   386篇
  1999年   336篇
  1998年   275篇
  1997年   193篇
  1996年   202篇
  1995年   155篇
  1994年   144篇
  1993年   96篇
  1992年   78篇
  1991年   43篇
  1990年   26篇
  1989年   27篇
  1988年   12篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1959年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
2.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
3.
In this study, chemically bonded phosphate ceramic coatings (CBPCCs) with different contents of aluminum phosphate (AP) are prepared on stainless steel (AISI 304L). Differential scanning calorimetry, X-ray diffraction, contact angle test, and a tribocorrosion experiment are carried out to clarify the role of AP in the tribocorrosion performance of CBPCCs. The results show that, with the increase in the AP content, the enthalpy of curing increases because of the greater formation of the bonding phase AlPO4. Both in static corrosion and in tribocorrosion, the corrosion current density of CBPCCs achieves the lowest value when the weight ratio of AP to polytetrafluoroethylene is about 0.78. Additionally, the influence mechanism of AP on tribocorrosion is clarified. AlPO4 from the reaction between AP and Al2O3 has excellent mechanical properties and can enhance the wear resistance of CBPCCs by reducing the mechanical wear and the increased wear due to corrosion. The alumina particles wrapped by AlPO4 can form a dense and smooth surface and change the direction of electrolyte propagation, which leads to the increase in the tribocorrosion resistance of CBPCCs.  相似文献   
4.
The Ag-Pd internal electrode of multilayer piezoelectric ceramics needs to be sintered below 1000°C, and lead wires and components need to be welded with lead-free solder at 260°C. PNN–PMW–PZT–xSr piezoelectric ceramics with high Curie temperature (Tc > 260°C) were synthesized at a low sintering temperature (960°C) to meet the requirements of multilayer piezoelectric devices. The relationship between structures (phase, domain, and microstructures) and electrical properties (piezo/ferroelectric properties, and dielectric relaxation) in the Sr2+ substituted ceramics was investigated. Rietveld refinement and Raman spectra show that Sr2+ substitution can cause the phase change and increase the force constant of [BO6] octahedron. The piezoelectric response increases with increasing the content of the tetragonal phase (CTP) in the rhombohedral-tetragonal (R-T) coexisted ceramics. The ceramics with 0.6 mol% Sr2+ substitution have minimum activation energy for domain wall movement (Ea) of 0.0362 eV which favors the formation of nanometer-sized domains, and possess excellent electrical properties (d33 = 623 pC/N, d33* =783 pm/V, Tc =295°C). The higher the CTP, the lower the Ea. The lower Ea favors the rotation of polarization direction and extension, and is beneficial to the generation of the nanometer-size domains, resulting in high piezoelectric properties.  相似文献   
5.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
6.
SrF2 transparent ceramic is a promising upconversion material due to the low phonon energy. The effect of different sintering temperatures on Er:SrF2 transparent ceramics was investigated. The suitable sintering temperature for Er:SrF2 transparent ceramics was 900 °C by hot-pressed sintering in this study. High quality of Er:SrF2 transparent ceramics with different doping concentrations were obtained. The upconversion luminescence spectra and decay behavior were compared between Er:SrF2 and Er:CaF2 transparent ceramics with different Er3+ doping concentration. The green emission of 5 at.% Er:SrF2 ceramic was much stronger than that of 5 at.% Er:CaF2 ceramic, while the red emission of Er:SrF2 ceramic was almost the same as that of Er:CaF2 ceramic. The upconversion luminescence lifetime of Er:SrF2 transparent ceramics was longer than that of Er:CaF2.All the results indicated Er:SrF2 transparent ceramics was a candidate for green fluorescent upconversion materials.  相似文献   
7.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
8.
《Ceramics International》2022,48(6):7593-7604
The ceramic core, produced by hot injection molding, is one of the critical components for manufacturing high-performance aircraft engine turbine blades. However, the injection molding process will cause defects such as burrs and flashes in the fine structure of the formed ceramic core. Manual trimming is necessary, but the trimming quality is poor, and the yield is low. In this paper, the online trimming method of ceramic cores is studied. Based on the orthogonal experiment method, the optimal laser parameters for processing the ceramic core's porous multi-scale particle structure material were obtained. Further, the problems of the match head and tail phenomenon and dimensional accuracy improvement in trimming ceramic cores have been studied. A path optimisation method is proposed to improve the quality and accuracy of the trimming profile effectively. Finally, the overall process flow of ceramic core trimming is elaborated, and experimental verification is given. The results show that the ceramic core online trimming method proposed in this paper has advantages of high precision and high yield compared with the manual method, which will have substantial potential application value in the aviation field.  相似文献   
9.
Here we report a transparent dual-phase ZnO·2.7Al2O3 ceramic. The composite is pore-free and consists of thin nanosheets with a spinel phase and a hexagonal phase, while the two phases match closely in both lattice and refractive index. Such features result in excellent optical transmittance (maximum value >80% in the visible spectrum) at comparable phase volume. This work may provide a new thought for the rational structural design of optical nanocomposites.  相似文献   
10.
《Ceramics International》2022,48(3):3311-3327
A liquid carbon-rich SiAlCN precursor is facilely synthetized by hydrosilylation between liquid polyaluminocarbosilane (LPACS) and 1,3,5,7-tetravinyl- 1,3,5,7-tetramethylcyclotetrasilazane {[CH3(CH2CH2)SiNH]4} (TeVSZ). The structural evolution during the polymer-ceramic conversion process is investigated by various methods. The results show that the main cured mechanism is β-addition on hydrosilylation, although α-addition on hydrosilylation, polymerization of vinyl groups and dehydrocoupling reaction between N–H bonds also occur during the cured process. During the pyrolysis process, dehydrogenation and dehydrocarbonation condensation reactions, transamination reactions occur, leading to formation of a three-dimensional network inorganic structure at 400–800 °C, where part of Al–O bonds convert to Al–N bonds. Then the network inorganic structure undergoes demixing and separation into amorphous SiAlCN(O) phase, where the amorphous turbostratic free carbon phase also form at 800–1200 °C. With demixing and decomposition of the amorphous carbon-rich SiAlCN(O) phase, the crystalline β-SiC and graphitic carbon start to form at about 1400 °C, the crystalline sizes of them both enlarge with increasing temperature. However, the crystal growth of β-SiC is distinctly inhibited due to existence of the rich carbon phase, tiny amounts of Al2O3 and AlN. In addition, a small amount of AlN can promote the formation of α-SiC at 1800 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号