首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   881篇
  免费   266篇
  国内免费   13篇
电工技术   1篇
综合类   17篇
化学工业   671篇
金属工艺   64篇
机械仪表   14篇
建筑科学   15篇
矿业工程   2篇
能源动力   22篇
轻工业   23篇
石油天然气   5篇
武器工业   1篇
无线电   24篇
一般工业技术   277篇
冶金工业   22篇
自动化技术   2篇
  2024年   4篇
  2023年   35篇
  2022年   14篇
  2021年   74篇
  2020年   62篇
  2019年   65篇
  2018年   71篇
  2017年   75篇
  2016年   73篇
  2015年   80篇
  2014年   65篇
  2013年   72篇
  2012年   40篇
  2011年   58篇
  2010年   37篇
  2009年   45篇
  2008年   37篇
  2007年   47篇
  2006年   42篇
  2005年   41篇
  2004年   34篇
  2003年   25篇
  2002年   12篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
排序方式: 共有1160条查询结果,搜索用时 15 毫秒
1.
2.
Aqueous film-forming foams (AFFFs) are an important for fire extinguishing, and their key ingredient is fluorinated surfactant. In recent years, traditional long-chain fluorinated surfactants have been banned by most countries because of their persistence, bio-accumulation and toxicity. Therefore, increased attention has been paid to the research and development of short-chain fluorinated surfactants. As is well known, the introduction of hydrophilic or hydrophobic groups in a surfactant affects its surface activity, and therefore, the fire extinguishing performance of AFFFs. In this work, a series of short-chain fluorosurfactant-based AFFFs with different hydrophobic chain lengths were prepared. The physicochemical performance of mixed systems (fluorinated surfactant plus sodium hexanesulfonate), including surface activity, spreading ability, foam expansion, drainage time, and the fire extinguishing and burn-back performance of AFFFs were studied. The results show that the critical micelle concentration (CMC) and the surface tension (γCMC) at the CMC of mixed systems at 25°C are lower than 7.68 mmol/L and 16.51 mN/m, respectively. For mixed systems, the average spreading rate is more than 1.09 cm/s, the foam expansion is over 7.1, and the drainage time is greater than 3.28 min. The fire extinguishing time of AFFFs on fuels is less than 51 s while the burn-back time is more than 15.18 min. The results imply a potential application prospect of the short-chain fluorinated surfactants in AFFFs.  相似文献   
3.
Isotropic and anisotropic shape-memory polymer foams are prepared by supercritical carbon dioxide foaming from a multiblock copolymer (PDLCL) consisting of poly(ω-pentadecalactone) and poly(ε-caprolactone) segments. Analysis by micro-computed tomography reveals for the anisotropic PDLCL foam cells a high shape anisotropy ratio of R = 1.72 ± 0.62 with a corresponding Young's compression moduli ratio between longitudinal and transversal direction of 4.3. The experimental compression data in the linear elastic range can be well described by the anisotropic open foam model of Gibson and Ashby. A micro-morphological analysis for single pores using scanning electron microscopy images permits the correlation between the macroscopic stress-compression behavior and microscale structural changes.  相似文献   
4.
In this article, we have studied the effect of carbonaceous nanofillers viz. fullerenol (0D), carboxylated multi-wall carbon nanotube (MWCNT, 1D), hydroxylated graphene (2D) and combination of carboxylated CNT and hydroxylated graphene as 3D in thermoplastic polyurethane on the tensile properties of the fabricated cellular structures. The concentration of nano-fillers was varied as 0.1, 1, and 5 wt%. Tensile properties of the nanocomposite cellular structures were measured as per ASTM D882 at 20°C (below glass transition temperature, Tg) and 40°C (above Tg). The results have shown that the tensile strength was found to increase by 200%–300% and the tensile modulus was found to increase by 150%–300% for 2D and 3D nano-fillers while significantly poor results were observed for 0D. However, the test data tensile strength and modulus showed marginal increase at 20°C and marginally low at 40°C for 1D filler. The interfacial adhesion was calculated by using experimental tensile data and the predictive models. The interfacial adhesion parameter (Bσ) calculated using Pukanszky equation was found significantly higher value for 2D (Bσ20 = 195.8) and 3D (Bσ20 = 192.0) fillers while poor adhesion was observed for 0D (Bσ20 = −81.6) fillers. The developed cellular structured materials were also evaluated by attenuated total reflection Fourier transform IR spectra, differential scanning calorimetry, X-ray diffraction, scanning electron microscope, and transmission electron microscope.  相似文献   
5.
Liquid foams of intermediate stability have been shown to be very efficient in the cleaning of sensitive surfaces because of the synergy between imbibition and foam decay. While we quantified these mechanisms for contaminations with liquid oils in our previous work, we show here their extension to oils containing soot particles in an effort to simulate increasingly realistic contaminations. Using foams with a wide range of liquid fractions and with different stabilities, we show that the main cleaning mechanisms remain very similar, with the oil entraining the soot particles. However, we find much less efficient soot removal when the liquid channels of the foams are small enough to hinder efficient transport of the soot particles.  相似文献   
6.
In the present work blends of polystyrene (PS) with sepiolites have been produced using a melt extrusion process. The dispersion degree of the sepiolites in the PS has been analyzed by dynamic shear rheology and X-ray micro-computed tomography. Sepiolites treated with quaternary ammonium salts (O-QASEP) are better dispersed in the PS matrix than natural sepiolites (N-SEP) or sepiolites organo-modified with silane groups (O-SGSEP). A percolated network is obtained when using 6.0 wt% of O-QASEP, 8.0 wt% of N-SEP and 10.0 wt% of O-SGSEP. It has been shown that multiple extrusion processes have a negative effect on the polymer architecture. They produce a reduction in the length of the polymeric chains, and they do not lead to a better dispersion of the particles in the polymer matrix. Foams have been produced using a gas dissolution foaming process, where a strong effect of the dispersion degree on the cellular structure of the different foams was found. The effects on the cellular structure obtained by using different types of sepiolites, different contents of sepiolites and different extrusion conditions have been analyzed. The foams produced with the formulations containing O-QASEP present the lowest cell size and the most homogeneous cellular structures.  相似文献   
7.
Introducing electrical conductive function to discharge local piezoelectric effect is found effective for improving airborne sound absorption performance. In this work, instead of conductive fillers, a composite with two piezoelectric materials with opposite piezoelectric responses was explored aiming at enhanced sound absorption effect. Open-cell poly(vinylidene fluoride)/(K0.5Na0.5)NbO3 (PVDF/KNN)-nanofiber composite foams were proposed and investigated for airborne sound absorption purpose. Structural and thermal analyses showed that the KNN nanofibers were well dispersed in the PVDF matrix and enhanced the degree of crystallinity of polar phase of PVDF. Significantly enhanced airborne sound absorption over a broad frequency range was observed in the PVDF/KNN-nanofiber composite foams, with increasing KNN nanofibers. One possible mechanism for the improved sound absorption with the piezoelectric KNN nanofibers with positive piezoelectric coefficient added in the PVDF matrix with negative piezoelectric coefficient is that electrical discharge could be facilitated for energy dissipation with the opposite charges generated through the piezoelectric effects in the two phases with opposite polarity. The experimental results show that the open-cell PVDF/KNN-nanofiber composite foams are promising for broadband airborne sound absorption application, and our analysis shed a light on the strategy in designing piezoelectric composite foam with high sound absorption performance.  相似文献   
8.
郭芳  许准  王晶玉  赵晗  许博 《中国塑料》2020,34(9):66-72
通过界面聚合法合成了一种线性富磷化阻燃剂(LPRFR),将LPRFR与可膨胀石墨(EG)复配制备了阻燃聚氨酯泡沫(RPUF),使用红外光谱分析仪、核磁共振分析仪对阻燃剂LPRFR的化学结构进行了表征,并通过极限氧指数仪、锥形量热仪、扫描电子显微镜和红外光谱分析仪对RPUF的燃烧性能、微观形貌和化学结构进行了分析。结果表明,仅10 %(质量分数,下同)的LPRFR 与8 %EG复配后,RPUF的极限氧指数(LOI)便达到26.1 %;LPRFR和EG能大幅降低RPUF的热释放速率,并提高基体的成炭能力; LPRFR参与了燃烧过程中的成炭反应,形成了含P—O—C及P=O结构的高质量炭层,有效隔绝了氧气和热量;LPRFR是一种对于聚氨酯泡沫阻燃性能优异的新型阻燃剂。  相似文献   
9.
Flame retardant expandable polystyrene (EPS) foams were prepared by coating method. Red phosphorus (RP) and expandable graphite (EG) were chosen as the flame retardants to be coated on the surface of expanded PS beads. By the presence of 33 phr RP/EG with a mass ratio of 1:1, the limiting oxygen index of EPS foam could reach up to 26.9%, with V-0 rating obtained in UL-94 test. The peak heat release rate could also decrease to 180.67 kW/m2, which was 72.9% lower than that of neat EPS sample. Thermogravimetric analysis revealed an obvious increase of thermal stability and residue char amount by the presence of RP and EG. From the observation and analysis of char residue, it could be proposed that there existed a significant synergistic effect between RP and EG. RP could be oxidized and further react with graphite by the presence of oxygen at high temperature, forming isolated char layer and releasing nonflammable gases. Moreover, P radicals were generated at high temperature and could capture the radicals formed during the combustion of polystyrene and eliminate the burning chain reactions.  相似文献   
10.
This paper describes the mechanical behavior in compression, at both low- and high-strain rates, of several low-density open-cell polyolefin-based foams with different gas phase interconnectivities and different levels of gas-phase tortuosity. The mechanical properties of the open-cell polyolefin foams have been compared with two different references: an open-cell low tortuous foam based on flexible polyurethane and closed-cell polyolefin foams. One the one hand, at low-strain rates, it has been observed that the mechanical performance is controlled by the open-cell content and the properties of the polymeric matrix, being the influence of tortuosity small. On the other hand, the influence of the level of tortuosity is critical to high-strain rates. In fact, it has been demonstrated that open-cell polyolefin foams with high tortuosity (HT) present an unexpected mechanical behavior, showing excellent mechanical properties, which are even similar to that of closed-cell polyolefin materials with the same chemical composition. Therefore, low-density polyolefin foams with HT have a unique mechanical performance strongly influenced by the strain rate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48468.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号