首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53623篇
  免费   4179篇
  国内免费   2039篇
电工技术   8458篇
技术理论   1篇
综合类   3590篇
化学工业   8228篇
金属工艺   2029篇
机械仪表   2730篇
建筑科学   2892篇
矿业工程   2071篇
能源动力   4919篇
轻工业   4505篇
水利工程   1012篇
石油天然气   4742篇
武器工业   209篇
无线电   3122篇
一般工业技术   3072篇
冶金工业   3324篇
原子能技术   463篇
自动化技术   4474篇
  2024年   68篇
  2023年   615篇
  2022年   1191篇
  2021年   1446篇
  2020年   1728篇
  2019年   1273篇
  2018年   1130篇
  2017年   1337篇
  2016年   1330篇
  2015年   1542篇
  2014年   3276篇
  2013年   3255篇
  2012年   4054篇
  2011年   4093篇
  2010年   3303篇
  2009年   3166篇
  2008年   2864篇
  2007年   3474篇
  2006年   3287篇
  2005年   2835篇
  2004年   2421篇
  2003年   2249篇
  2002年   1951篇
  2001年   1650篇
  2000年   1332篇
  1999年   1140篇
  1998年   807篇
  1997年   616篇
  1996年   546篇
  1995年   421篇
  1994年   333篇
  1993年   212篇
  1992年   211篇
  1991年   144篇
  1990年   106篇
  1989年   111篇
  1988年   77篇
  1987年   40篇
  1986年   40篇
  1985年   40篇
  1984年   18篇
  1983年   26篇
  1982年   7篇
  1981年   20篇
  1980年   16篇
  1979年   9篇
  1978年   4篇
  1977年   6篇
  1975年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
朱佩佩 《电讯技术》2022,62(3):342-347
电力线是一类形状细长、特征稀疏、随着视角的变化容易混淆在大量背景信息中的特殊障碍物,常规电力线检测识别算法得到的目标框对电力线所在位置的估计不够准确。为此,提出了一种相对角度估计方法,基于常规电力线目标检测与识别算法,并结合电力线相对角度估计,从而提高电力线的检测识别过程中所在位置的精度。相比电力线绝对角度回归的方法,提出的相对角度估计方法容易训练易收敛,计算量小,适用于实时性要求较高的应用场合。  相似文献   
2.
为了提高智能化光纤复合架空线路态势感知的实时性,将人工神经网络方法应用于光纤沿线应变解调,确定了神经网络的结构。编程实现了基于洛伦兹模型的最小二乘谱拟合方法和神经网络方法,采用不同信噪比和布里渊频移的布里渊谱训练神经网络,将它们应用于某光纤复合架空线路沿线光纤应变的测量,从不同角度比较了两种方法的计算结果。计算结果表明,神经网络方法能有效获得光纤沿线的布里渊频移进而获得应变,具有与谱拟合方法相似的准确性,但应变解调时间仅约为谱拟合方法的1/20000。研究结果为提高智能光纤复合架空线路态势感知的实时性提供了参考。  相似文献   
3.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   
4.
In this paper, a polypyrrole-carbon nanotube hydrogel (PPy-CNT) with 3D macroporous structure was prepared by secondary growth method. This self-supporting material with good conductivity and biocompatibility can be directly used as anode in a microbial fuel cell (MFC). The prepared material had a uniform structure with rich 3D porosity and showed good water retention performance. The effect of the mass ratio of PPy and CNT in the hydrogel were also investigated to evaluate the electrical performance of MFC. The MFC with 10:1 PPy-CNT hydrogel anode could reached the maximum power density of 3660.25 mW/m3 and the minimal electrochemical reaction impedance of anode was 5.06 Ω. The effects of Congo red concentration, external resistance and suspended activated sludge on decolorazation and electricity generation were also investigated in the MFC with the best performance hydrogel. When the Congo red concentration was 50 mg/L and the external resistance was 200 Ω, the dye decolorization rate and chemical oxygen demand (COD) removal rate could reach 94.35% and 42.31% at 48h while the output voltage of MFC was 480 mV. When activated sludge was present, the decolorization rate and COD removal rate could be increased to 99.55% and 48.08% at 48 h. The above results showed that the porous hydrogel anode had broad application prospects in synchronous wastewater treatment and electricity production of MFC.  相似文献   
5.
6.
《Journal of dairy science》2022,105(12):9623-9638
A simulation study was conducted to examine accuracy of estimating daily O2 consumption, CO2 and CH4 emissions, and heat production (HP) using a spot sampling technique and to determine optimal spot sampling frequency (FQ). Data were obtained from 3 experiments where daily O2 consumption, emissions of CO2 and CH4, and HP were measured using indirect calorimetry (respiration chamber or headbox system). Experiment 1 used 8 beef heifers (ad libitum feeding; gaseous exchanges measured every 30 min over 3 d in respiration chambers); Experiment 2 used 56 lactating Holstein-Friesian cows (restricted feeding; gaseous exchanges measured every 12 min over 3 d in respiration chambers); Experiment 3 used 12 lactating Jersey cows (ad libitum feeding; gaseous exchanges measured every hour for 1 d using headbox style chambers). Within experiment, averages of all measurements (FQALL) and averages of measurements selected at time points with 12, 8, 6, or 4 spot sampling FQ (i.e., sampling every 2, 3, 4, and 6 h in a 24-h cycle, respectively; FQ12, FQ8, FQ6, and FQ4, respectively) were compared. Within study a mixed model was used to compare gaseous exchanges and HP among FQALL, FQ12, FQ8, FQ6, and FQ4, and an interaction of dietary treatment by FQ was examined. A regression model was used to evaluate accuracy of spot sampling within study [i.e., FQALL (observed) vs. FQ12, FQ8, FQ6, or FQ4 (estimated)]. No interaction of diet by FQ was observed for any variables except for CH4 production in experiment 1. No FQ effect was observed for gaseous exchanges and HP except in experiment 2 where CO2 production was less (5,411 vs. 5,563 L/d) for FQ4 compared with FQALL, FQ12, and FQ8. A regression analysis between FQALL and each FQ within study showed that slopes and intercepts became farther from 1 and 0, respectively, for almost all variables as FQ decreased. Most variables for FQ12 and FQ8 had root mean square prediction error (RMSPE) less than 10% of the mean and concordance correlation coefficient (CCC) greater than 0.80, and RMSPE increased and CCC decreased as FQ decreased. When a regression analysis was conducted with combined data from the 3 experiments (mixed model with study as a random effect), results agreed with those from the analysis for the individual studies. Prediction errors increased and CCC decreased as FQ decreased. Generally, all the estimates from FQ12, FQ8, FQ6, and FQ4 had RMSPE less than 10% of the means and CCC greater than 0.90 except for FQ6 and FQ4 for O2 consumption and CH4 production. In conclusion, the spot sampling simulation with 3 indirect calorimetry experiments indicated that FQ of at least 8 samples (every 3 h in a 24-h cycle) was required to estimate daily O2 consumption, CO2 and CH4 production, and HP and to detect changes in those in response to dietary treatments. This sampling FQ may be considered when using techniques that measure spot gas exchanges such as the GreenFeed and face mask systems.  相似文献   
7.
An important difficulty associated with alkaline water electrolysis is the rise in anode overpotential attributable to bubble coverage of the electrode surface. For this study, a system with a high-speed video camera was developed, achieving in-situ observation of bubble generation on an electrode surface, monitoring an area of 1.02 mm2 at 6000 frames per second. The relation between polarization curve (current density up to 3.0 A cm?2) and oxygen bubble generation behavior on nickel electrodes having cylindrical wires and rectangular wires of different sizes (100–300 μm) was clarified. The generated bubbles slide upward, contacting the electrode surface and detaching at the top edge. Observations indicate that small electrodes have short bubble residence time and thin bubble covering layer on the electrode. As a result, the small electrode diameter contributes to smaller overpotential at high current density.  相似文献   
8.
Hydrogen generation from renewable energy resources is considered as a suitable solution to solve the problems related to the energy sector and the reduction of greenhouse gases. The aim of this study is to provide an integrated framework for identifying suitable areas for the construction of wind farms to produce hydrogen. For this purpose, a combined method of Geographic Information System (GIS) and multi-criteria decision making (MCDM) has been used to locate the power plant in Yazd province. The GIS method in the present study consisted of two parts: constraints and criteria. The constraint section included areas that were unsuitable for the construction of wind farms to produce power and hydrogen. In the present study, various aspects such as physical, economic and environmental had been considered as constraints. In the criteria section, eight different criteria from technical aspects (including average wind speed, hydrogen production potential, land slope) and economic aspects (including distance to electricity grid, distance to urban areas, distance to road, distance to railway and distance to centers of High hydrogen consumption) had been investigated. The MCDM tool had been used to weigh the criteria and identify suitable areas. Analytic Hierarchy Process (AHP) technique was used for weighting the criteria. The results of AHP weighting method showed that economic criteria had the highest importance with a value of 0.681. The most significant sub-criterion was the distance to urban areas and the least significant sub-criterion was the distance to power transmission lines. The results of GIS-MCDM analysis had shown that the most proper areas were in the southern and central sectors of Yazd province. In addition, the feasibility of hydrogen production from wind energy had shown that this province had the capacity to generate hydrogen at the rate of 53.6–128.6 tons per year.  相似文献   
9.
The performance of gallium promoted cobalt-ceria catalysts for ethanol steam reforming (ESR) was studied using H2O/C2H5OH = 6/1 mol/mol at 500 °C. The catalysts were synthetized via cerium-gallium co-precipitation and wetness impregnation of cobalt. A detailed characterization by N2-physisorption, XRD, H2-TPR and TEM allowed the normalization of contact time and rationalization of the role of each catalysts component for ESR. The gallium promoted catalyst, Co/Ce90Ga10Ox, was more efficient for the ethanol conversion to H2 and CO2, and the production of oxygenated by-products (such as, acetaldehyde and acetone) than Co/CeO2. The catalytic performance is explained assuming that: (i) bare ceria is able to dehydrogenate ethanol to ethylene; (ii) Ce–O–Ga interface catalyzes ethanol reforming; (iii) both Ce–O–Co and Ce–O–Ga interfaces takes part in acetone production; and (iv) cobalt sites further allow C–C scission. It is suggested that a cooperative role between Co and Ce–O–Ga sites enhance the H2 and CO2 yields under ESR conditions.  相似文献   
10.
Reformed exhaust gas recirculation technology has attracted great attention in internal combustion engines. A platform of an exhaust gas-fuel reformer connected with the marine LNG engine was set up for generating on-board hydrogen. Based on the platform, effects of the methane to oxygen ratio (M/O) and reformed exhaust gas ratio (REG) from the reformer and excess air ratio (λ) from the engine on the components, hydrogen yield, thermal efficiency and reforming process of the reformer were experimentally investigated. Results shown that hydrogen-rich gases (reformate) can be generated by reforming the mixture of engine exhaust gas (about 400 °C) and methane supplied via the reformer with Ni/Al2O3 catalyst, and the hydrogen concentration of reformate was between 6.2% and 12.6% by volume. The methane supplied rate and λ affected the components and temperature of the reactant in the reformer, while REG changed the gas hour space velocity during the exhaust gas-fuel reforming processes, resulting in the difference in the components of the reformate and thermal efficiency. At the present experimental condition, the highest H2 concentration reformate was generated under the M/O of 2.0, λ of 1.55 and REG of 6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号