首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2200篇
  免费   313篇
  国内免费   61篇
电工技术   102篇
综合类   103篇
化学工业   1044篇
金属工艺   54篇
机械仪表   19篇
建筑科学   45篇
矿业工程   13篇
能源动力   23篇
轻工业   153篇
水利工程   19篇
石油天然气   42篇
武器工业   3篇
无线电   277篇
一般工业技术   595篇
冶金工业   9篇
原子能技术   12篇
自动化技术   61篇
  2024年   4篇
  2023年   168篇
  2022年   93篇
  2021年   233篇
  2020年   152篇
  2019年   146篇
  2018年   88篇
  2017年   111篇
  2016年   96篇
  2015年   84篇
  2014年   102篇
  2013年   139篇
  2012年   183篇
  2011年   147篇
  2010年   102篇
  2009年   125篇
  2008年   84篇
  2007年   101篇
  2006年   108篇
  2005年   77篇
  2004年   50篇
  2003年   54篇
  2002年   36篇
  2001年   17篇
  2000年   12篇
  1999年   10篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有2574条查询结果,搜索用时 46 毫秒
1.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
2.
The luminescent hydrogen-bonded organic framework (HOF) based films have become one of the most remarkable materials for optical application, thus, developing facile synthesis methods and establishing multifunctional applications for HOF-based luminescent materials are essential. Herein, a dual-emitting Eu3+-functionalized HOF hydrogel film ( 1 ) is fabricated successfully. 1 emits a blue-green long afterglow when turning off the UV lamp, and the long afterglow lifetime gets to 1.99 s. 1 performs great selectivity, high sensitivity, and low detection limit toward ofloxacin and flumequine, and the sensing toward ofloxacin and flumequine is in accord with the chroma and ratio modes. The fluorescent response mechanisms of 1  toward ofloxacin and flumequine are investigated in depth, which are further utilized to build an anticounterfeiting platform with high-level security. The film-based anticounterfeiting platform can conduct information encryption on demand inline with different fluorescent responses and can also fetch specific information by controlling the long afterglow intensity and excited light. This study not only provides a representative case of the fabrication of dual-emitting Eu3+-functionalized HOF-based hydrogel film but also opens the possibility of HOF-based film as intelligent luminescent materials with multifunctionalities.  相似文献   
3.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
4.
Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,β-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.  相似文献   
5.
This work aims to develop hydrogel films of starch and carboxymethyl cellulose (CMC) crosslinked with sodium trimetaphosphate (STMP) and to characterize some of their properties. Starch and STMP (S/T), starch and CMC (S/C), and mixed (S/T/C) films were prepared by casting. The degree of substitution, morphology, swelling degree, FTIR, mechanical properties, and sorption isotherms were studied. Reticulated samples (S/T and S/T/C) showed the same degree of substitution (0.050 ± 0.001). All films presented homogeneous morphology, but the mixed film showed greater roughness. Crosslinking increased the swelling capacity of the mixed hydrogel at pH 7, although it remained decreased concerning the S/T hydrogel. However, this property was sensitive to pH variations. The mixed film (S/T/C) showed greater mechanical resistance. The casting process was efficient to produce hydrogel films of starch/CMC crosslinked with STMP and the general results demonstrated the advantages of the mixed hydrogel.  相似文献   
6.
以菠萝果肉纤维素(pineapple pulp cellulose,PPC)为原料,利用离子液体1-丁基-3-甲基咪唑氯盐(1-butyl-3-methylimidazole chloride,BmimCl)作溶剂,溶解PPC制备菠萝果肉纤维素水凝胶(pineapple pulp cellulose hydrogel,PPCH),以丙烯酸(acrylic acid,AA)为改性单体制备pH敏感性水凝胶(PPCH-AA),对其进行结构表征,并研究其功能特性;同时以水凝胶为载体吸附益生菌,研究其在模拟胃液和模拟肠液中的缓释行为。结果表明:所制备水凝胶的溶胀和药物缓释作用均具有pH敏感性,负载益生菌的PPCH和PPCH-AA在模拟胃液中的累计释放量(7 h内)分别为44.11 mg/g和16.7 mg/g,释放率分别为66.17%和25.05%;在模拟肠液中的累计释放量(7 h内)分别为59.25 mg/g和58.01 mg/g,释放率分别为88.87%和87.02%。结论:AA接枝的PPCH可以作为潜在的递送载体,用于益生菌的控释。  相似文献   
7.
杜仲胶(EUG)主要由反式聚异戊二烯组成,是一种具有良好生物相容性、橡塑二重性和优异力学性能的天然高分子材料。近年来,EUG在新型生物基材料领域备受瞩目。EUG在室温下结晶度高,表现为刚性塑料状态,极大程度限制了其在功能材料领域的应用。因此,将EUG进行物理或化学改性,进而拓宽其应用范围已成为近年来的研究热点。本文详细介绍了EUG分子链结构特点,随后从物理改性和化学改性两个方面系统论述了EUG常见的改性方法及机理,如通过与其它材料共混或环氧化改性、硫化改性等改变EUG的硬度及弹性。对EUG在绿色轮胎与公路建设、形状记忆与自修复材料、减震与吸声材料、医用材料、生物降解复合材料等新型功能材料领域的最新研究进展进行了综述,并在此基础上展望了EUG在生物基高性能材料领域的发展前景。  相似文献   
8.
Surface-deposited pathogens are sources for the spread of infectious diseases. Protecting public facilities with a replaceable or recyclable antifouling coating is a promising approach to control pathogen transmission. However, most antifouling coatings are less effective in preventing pathogen-contained respiratory droplets because these tiny droplets are difficult to repel, and the deposited pathogens can remain viable from hours to days. Inspired by mucus, an antimicrobial supramolecular organogel for the control of microdroplet-mediated pathogen spread is developed. The developed organogel coating harvests a couple of unique features including localized molecular control-release, readily damage healing, and persistent fouling-release properties, which are preferential for antifouling coating. Microdroplets deposited on the organogel surfaces will be spontaneously wrapped with a thin liquid layer, and will therefore be disinfected rapidly due to a mechanism of spatially enhanced release of bactericidal molecules. Furthermore, the persistent fouling-release and damage-healing properties will significantly extend the life-span of the coating, making it promising for diverse applications.  相似文献   
9.
In this paper, a polypyrrole-carbon nanotube hydrogel (PPy-CNT) with 3D macroporous structure was prepared by secondary growth method. This self-supporting material with good conductivity and biocompatibility can be directly used as anode in a microbial fuel cell (MFC). The prepared material had a uniform structure with rich 3D porosity and showed good water retention performance. The effect of the mass ratio of PPy and CNT in the hydrogel were also investigated to evaluate the electrical performance of MFC. The MFC with 10:1 PPy-CNT hydrogel anode could reached the maximum power density of 3660.25 mW/m3 and the minimal electrochemical reaction impedance of anode was 5.06 Ω. The effects of Congo red concentration, external resistance and suspended activated sludge on decolorazation and electricity generation were also investigated in the MFC with the best performance hydrogel. When the Congo red concentration was 50 mg/L and the external resistance was 200 Ω, the dye decolorization rate and chemical oxygen demand (COD) removal rate could reach 94.35% and 42.31% at 48h while the output voltage of MFC was 480 mV. When activated sludge was present, the decolorization rate and COD removal rate could be increased to 99.55% and 48.08% at 48 h. The above results showed that the porous hydrogel anode had broad application prospects in synchronous wastewater treatment and electricity production of MFC.  相似文献   
10.
为扩展非织造布在保鲜包装材料中的应用,以具有药用价值的沙棘作为抗氧化保鲜成分原料,通过负载不同体积分数的沙棘提取物(SBT)制备罗布麻纳米纤维素/壳聚糖基水凝胶,并与聚酯非织造布复合制备复合水凝胶非织造布保鲜材料,对其阻隔性能、释放行为、抗氧化活性、抗菌性以及保鲜性能进行分析。结果表明:随着SBT体积分数的增加,复合水凝胶非织造布的阻隔性增强且抗氧化活性显著提高;在18 d的释放行为测试中,复合水凝胶非织造布在酸性条件下SBT的最大累计释放率可达67.84%,对金黄色葡萄球菌和大肠杆菌的抑菌带宽度均超过1 mm,有较好的抗菌性能;添加体积分数为30% SBT的复合水凝胶非织造布综合保鲜能力最佳,可储存鲜切苹果时间最长达9 d。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号