首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9153篇
  免费   1214篇
  国内免费   741篇
电工技术   1114篇
综合类   744篇
化学工业   609篇
金属工艺   781篇
机械仪表   609篇
建筑科学   514篇
矿业工程   221篇
能源动力   328篇
轻工业   173篇
水利工程   153篇
石油天然气   312篇
武器工业   135篇
无线电   2493篇
一般工业技术   1284篇
冶金工业   445篇
原子能技术   148篇
自动化技术   1045篇
  2024年   20篇
  2023年   144篇
  2022年   199篇
  2021年   262篇
  2020年   362篇
  2019年   353篇
  2018年   292篇
  2017年   399篇
  2016年   417篇
  2015年   431篇
  2014年   545篇
  2013年   622篇
  2012年   717篇
  2011年   792篇
  2010年   512篇
  2009年   587篇
  2008年   481篇
  2007年   633篇
  2006年   557篇
  2005年   442篇
  2004年   392篇
  2003年   334篇
  2002年   298篇
  2001年   244篇
  2000年   195篇
  1999年   174篇
  1998年   125篇
  1997年   98篇
  1996年   91篇
  1995年   82篇
  1994年   74篇
  1993年   31篇
  1992年   41篇
  1991年   35篇
  1990年   32篇
  1989年   25篇
  1988年   21篇
  1987年   11篇
  1986年   9篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
ABSTRACT

The hydrophobic polyether sulfone membranes were prepared by the sol-gel method to be applied in an air gap membrane distillation setup for desalination. The surface modifications were carried out using Trimethylsilyl chloride (TMSCl) and Methyltrimethoxysilane (MTMS) solutions. The membranes were characterized using Attenuated Total Reflection Infrared (ATR-IR) spectroscopy, Scanning Electron Microscopy (SEM), and Optical Contact Angle (OCA) methods. The effects of membrane preparation as well as operating conditions such as temperature difference, salt concentration, feed rotation speed, and cold-side temperature on membrane performance were investigated using central composite design method. It was found that feed temperature has the largest effect among the parameters on the permeation flux. The flow rate and salt rejection of the membrane in the optimum conditions were 4.47 Kg m?2 h?1 and 99.37%, respectively.  相似文献   
2.
吕薇  姜根山  刘月超  张伟 《声学技术》2022,41(6):789-795
为了研究温度分布对于管阵列结构中的声透射特性的影响,以核电站的实际工况为背景,构建了不同的温度场以及周期性变化的非均匀温度场,利用有限元方法进行数值模拟。结果表明:(1)温度分布会改变管阵列声透射频谱的“禁带”宽度以及中心频率位置。在同一介质中,温度变化对频率较高位置的影响大于频率较低的位置。(2)在同样为10℃的温度差下,当水的平均声速为1 653 m·s-1、饱和水蒸气的平均声速为522.5 m·s-1时,介质为水时的禁带宽度及中心频率位置变化较大,即声速大的介质的频谱对于温度的变化更敏感。(3)当温度差在10℃以内,在周期性变化的非均匀温度场和与均匀温度场中管阵列声透射特性在第一中心频率23 996.1 Hz之前,两频谱差别很小,在第一禁带之后会出现明显区别。该研究成果对完善核电站应用的声学检测提供了理论基础。  相似文献   
3.
The dependence of the maximum and minimum wet thicknesses on the coating gap is derived for the slot-die coating process, under different slot-die configurations. Analytical expressions for the wet thickness and its derivative with respect to the coating gap are obtained using a simple flow model. The results indicate that, as expected, the minimum wet thickness increases linearly with the coating gap; however, the maximum wet thickness demonstrates a counterintuitive trend of decreasing as the coating gap increases, when a specific slot-die configuration is assumed. Moreover, the results are also validated by numerically solving the complete two-dimensional (2D) Navier–Stokes equation.  相似文献   
4.
GeTe is a promising candidate for the fabrication of high-temperature segments for p-type thermoelectric (TE) legs. The main restriction for the widespread use of this material in TE devices is high carrier concentration (up to ∼ 1021 cm−3), which causes the low Seebeck coefficient and high electronic component of thermal conductivity. In this work, the band structure diagram and phase equilibria data have been effectively used to attune the carrier concentration and to obtain the high TE performance. The Ge1−xBixTe (x = 0.04) material prepared by the Spark plasma sintering (SPS) technique demonstrates a high power factor accompanied by moderate thermal conductivity. As a result, a significantly higher dimensionless TE figure of merit ZT = 2.0 has been obtained at ∼ 800 K. Moreover, we are the first to propose that application of the developed Ge1−xBixTe (x = 0.04) material in the TE unicouple should be accompanied by SnTe and CoGe2 transition layers. Only such a unique solution for the TE unicouple makes it possible to prevent the negative effects of high contact resistance and chemical diffusion between the segments at high temperatures.  相似文献   
5.
This paper reports an investigation on the structure-properties correlation of trivalent metal oxide (Al2O3)-doped V2O5 ceramics synthesized by the melt-quench technique. XRD patterns confirmed a single orthorhombic V2O5 phase formation with increasing strain on the doping of Al2O3 in place of V2O5 in the samples estimated by Williamson-Hall analysis. FTIR and Raman investigations revealed a structural change as [VO5] polyhedra converts into [VO4] polyhedra on the doping of Al2O3 into V2O5. The optical band gap was found in a wide semiconductor range as confirmed by UV–visible spectroscopy analysis. The thermal and conductivity behavior of the prepared samples were studied using thermal gravimetric analysis (TGA) and impedance analyzer, respectively. All the prepared ceramics exhibit good DC conductivity (0.22–0.36 Sm-1) at 400 ?C. These materials can be considered for intermediate temperature solid oxide fuel cell (IT-SOFC)/battery applications due to their good conductivity and good thermal stability.  相似文献   
6.
Understanding the impact of bismuth cations on the optical properties of borosilicate glass is significant for manipulating borate glass applications. In this paper, the influence of bismuth cations on both structural and optical properties of borosilicate glass doped with NiO was investigated. Different glass samples, containing different amounts of Bi2O3 and a constant amount of NiO, were prepared and studied. Infrared (IR) analysis was carried out to study the internal structure within the investigated glass samples. Optical absorption studies were performed to investigate the impact of Bi2O3 content on optical properties of the BiBaNiB-glasses. Astonishingly, with Bi2O3 addition, an absorption band at 380 nm has appeared. Moreover, this band is overlapped with the Urbach edge; which regularly produced an artificial edge-like feature at ~450 nm. A detailed deconvolution protocol has been implemented for an appropriate understanding of these spectra and unraveling the hidden Urbach edge. Optical band gap energy, linear and nonlinear refractive index for each BiBaNiB sample were calculated. Furthermore, the metallization criterion was calculated to examine the metallic or insulating nature of the BiBaNiB-glasses. The values of the nonlinear third-order susceptibility and nonlinear refractive index were increased with Bi2O3 doping. The BiBaNiB-glasses exhibited outstanding stability and optical band gap than the pristine glass sample, which makes it possible for practical applications.  相似文献   
7.
Fe2O3 with high theoretical capacity, low cost, and environmental friendliness has been attracted great attention in lithium-ion batteries (LIBs), which however is limited by low rate capability and fast capacity fading owing to low electronic conductivity, self-aggregation, and sever volume expansion. CNTs with excellent conductivity and unique 3D interconnected network are ideal matrices for composite electrochemical materials, but it is difficult to meet the demand of high capacity. Here, uniform α-Fe2O3 nanoparticles with narrow gap (~1.4 nm) were immobilized on CNTs through N-doped carbon (α-Fe2O3/CNTs-NC) that can address these issues. As an advanced LIBs anode, the electrode displays unprecedented specific capacity (1173 mAh/g at 0.2 A/g) and outstanding rate behavior (716.4 mAh/g at 5.0 A/g after 1200 cycles), which are even superior to the theoretical capacity (1007 mAh/g) and the performance of most reported Fe2O3-based anodes. Homogeneous nano-sized α-Fe2O3 with a narrow gap highly shortens the diffusion path for Li+ transport, exposes quite sufficient active sites, and prevents the volume change. Moreover, the 3D backbone of CNTs with a more homogeneously distributed electric field can enhance conductivity, and tightly contact with α-Fe2O3 by NC, then obtain robust structural stability, which boosts LIBs in storage capacity, rate capability, and cycling stability.  相似文献   
8.
SiCNO ceramic is prepared by pyrolyzing modified polysilazane. Its microstructure feature, dielectric properties and charge transition mechanisms are studied based on the analysis of effects of pyrolysis temperature on AC electrical performance. The Tauc band and the energy states density at Fermi level are studied by ultraviolet absorption and dielectric tests. The charge transition in the silicon-based matrix was analyzed according to Jonscher's dielectric relaxation theory. Results show that SiCNO ceramic obtained at 1000–1300?°C is amorphous with chemical stability. Three types of charge transition, that is, excitation from deep traps into the delocalized bands and the corresponding reverse capture processes, hopping near the Fermi level, and localized hopping of an electron in a potential double well, are enhanced as annealing temperature increases, which occur within energy band of Si-based matrix.  相似文献   
9.
Connexin43 (Cx43), the main gap junction and hemichannel forming protein in the urinary bladder, participates in the regulation of bladder motor and sensory functions and has been reported as an important modulator of day–night variations in functional bladder capacity. However, because Cx43 is expressed throughout the bladder, the actual role played by the detrusor and the urothelial Cx43 is still unknown. For this purpose, we generated urothelium-specific Cx43 knockout (uCx43KO) mice using Cre-LoxP system. We evaluated the day–night micturition pattern and the urothelial Cx43 hemichannel function of the uCx43KO mice by measuring luminal ATP release after bladder distention. In wild-type (WT) mice, distention-induced ATP release was elevated, and functional bladder capacity was decreased in the animals’ active phase (nighttime) when Cx43 expression was also high compared to levels measured in the sleep phase (daytime). These day–night differences in urothelial ATP release and functional bladder capacity were attenuated in uCx43KO mice that, in the active phase, displayed lower ATP release and higher functional bladder capacity than WT mice. These findings indicate that urothelial Cx43 mediated ATP signaling and coordination of urothelial activity are essential for proper perception and regulation of responses to bladder distension in the animals’ awake, active phase.  相似文献   
10.
Undoped and Er3+-doped Bi2O3 thin films were sputter-deposited on Si(100) substrates. Sufficiently oxidized Bi2O3 films with refractive indices between 2.17?2.23 were obtained at a wavelength of 633 nm; these values are comparable to those of bulk Bi2O3 crystals. While the film composition was stable for deposition temperatures between room temperature (RT) and 450 °C, the refractive index steeply decreased above 450 °C and reached 1.4 at 600 °C. The lowering of the optical transmittance spectra indicated aggregation of metallic Bi and darkening of the film. All films exhibited X-ray diffraction patterns of α-Bi2O3. The direct and indirect bandgap energies derived from the Tauc plots were 3.4–3.7 eV and 1.9–2.5 eV, respectively, depending on the O2 flow rate and deposition temperature. Upon excitation of Er3+-doped Bi2O3 films at 532 nm, Er3+ emissions peaking at 1537 and 1541 nm appeared, and the photoluminescence spectra included fine structures reflecting crystal-field splitting. Resonant excitation of Er3+ 4f levels and indirect excitation via the defect levels of Bi2O3 followed by energy transfer to Er3+ contributed to the emission. The films deposited at RT with Er concentrations of 2 at.% had the emission intensity of Er3+, but concentration quenching strongly suppressed the Er3+ emission because the doped Er3+ ions stayed inside the Bi2O3 crystals. At deposition temperatures above 400 °C, the concentration quenching was mitigated possibly because out-diffusion of Er3+ ions reduced the effective number of Er3+ ions in the Bi2O3 crystalline domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号