首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13503篇
  免费   1127篇
  国内免费   896篇
电工技术   454篇
综合类   860篇
化学工业   1642篇
金属工艺   1307篇
机械仪表   656篇
建筑科学   471篇
矿业工程   570篇
能源动力   417篇
轻工业   256篇
水利工程   100篇
石油天然气   487篇
武器工业   66篇
无线电   3258篇
一般工业技术   3777篇
冶金工业   686篇
原子能技术   76篇
自动化技术   443篇
  2024年   15篇
  2023年   137篇
  2022年   154篇
  2021年   232篇
  2020年   313篇
  2019年   234篇
  2018年   258篇
  2017年   399篇
  2016年   408篇
  2015年   402篇
  2014年   655篇
  2013年   882篇
  2012年   958篇
  2011年   1100篇
  2010年   764篇
  2009年   841篇
  2008年   847篇
  2007年   981篇
  2006年   899篇
  2005年   793篇
  2004年   684篇
  2003年   570篇
  2002年   533篇
  2001年   463篇
  2000年   403篇
  1999年   284篇
  1998年   254篇
  1997年   188篇
  1996年   158篇
  1995年   169篇
  1994年   126篇
  1993年   114篇
  1992年   77篇
  1991年   58篇
  1990年   45篇
  1989年   26篇
  1988年   21篇
  1987年   12篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   4篇
  1981年   8篇
  1979年   6篇
  1978年   5篇
  1976年   5篇
  1975年   3篇
  1974年   5篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
In this work, coupling effects of water content, temperature, oxygen density, and polytetrafluoroethylene (PTFE) loading on oxygen transport through an ionomer thin film on a platinum surface in a catalyst layer of a proton exchange membrane (PEM) fuel cell are investigated using molecular dynamics approach. Taguchi orthogonal algorithm is employed to comprehensively analyze the coupling effects in a limited number of cases. It is found that the effect of operation temperature is the weakest among the four factors, which has the smallest effect index 14.4. Coupling effects including the PTFE loadings on the oxygen transfer through the ionomer thin film is uncovered. Less PTFE loadings should be beneficial for the oxygen transfer. The chemical potential gradient is considered as the major driven force for the oxygen transport through the ionomer thin film, and oxygen density is the dominating factor, significantly affecting the chemical potential in the thin film.  相似文献   
2.
Halide perovskites are a versatile class of semiconductors employed for high performance emerging optoelectronic devices, including flexoelectric systems, yet the influence of their ionic nature on their mechanical behavior is still to be understood. Here, a combination of atomic-force, optical, and compositional X-ray microscopy techniques is employed to shed light on the mechanical properties of halide perovskite films at the nanoscale. Mechanical domains within and between morphological grains, enclosed by mechanical boundaries of higher Young's Modulus (YM) than the bulk parent material, are revealed. These mechanical boundaries are associated with the presence of bromide-rich clusters as visualized by nano-X-ray fluorescence mapping. Stiffer regions are specifically selectively modified upon light soaking the sample, resulting in an overall homogenization of the mechanical properties toward the bulk YM. This behavior is attributed to light-induced ion migration processes that homogenize the local chemical distribution, which is accompanied by photobrightening of the photoluminescence within the same region. This work highlights critical links between mechanical, chemical, and optoelectronic characteristics in this family of perovskites, and demonstrates the potential of combinational imaging studies to understand and design halide perovskite films for emerging applications such as photoflexoelectricity.  相似文献   
3.
The wearable intelligent electronic product similar to electronic skin has a great application prospect. However, flexible electronic with high performance pressure sensing functions are still facing great challenges. In this paper, the highly sensitive flexible electronic skin (FES) based on the PVDF/rGO/BaTiO3 composite thin film was fabricated using the near-field electrohydrodynamic direct-writing (NFEDW) method. The PVDF/rGO/BaTiO3 composite solution was directly written on flexible substrate by the NFEDW method to fabricate FES with micro/nano fiber structure, which has the function of sensing pressure with high sensitivity and fast response. The surface morphology and microstructure were characterized by SEM, AFM, and optical microscope in detail. The fabricated FES has high sensitivity (59 kPa−1) and faster response time (130 ms). FES has been successfully applied to the detection of human motion and subtle physiological signals. The experimental results show that FES has good stability and reliability. FES can recognize human motion, and it has a broad application prospect in the field of wearable devices.  相似文献   
4.
《Ceramics International》2021,47(22):31442-31450
ITO/Ag/ITO multilayer thin films have been a potential substitute of the conventional single-layer transparent conducting film. Nevertheless, the mechanical stability under preparation and in-service conditions still limits their applications and developments. In this paper, the influences of different structural properties as well as layer structure on both surface morphological properties and mechanical properties of the ITO/Ag/ITO multilayer thin films in comparison with commercial single-layer ITO thin film were systematically investigated. The results demonstrate that, i) the tri-layer composite has large impacts on the preferential orientation, and exhibits the decreased values of surface roughness, net lattice distortion and residual stress; ii) the increased hardness (H) and decreased Young's modulus (E) for full annealed ITO/Ag/ITO multilayer films indicate that it is possible to tailor mechanical properties of the materials by manufacturing multilayer composite; iii) the ITO/Ag/ITO multilayer thin film exhibits remarkable improvements in wear resistance with the increase of annealing temperature, which is mainly attributed to the increased ratios of H/E and H3/E2.  相似文献   
5.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
6.
《Ceramics International》2022,48(11):15293-15302
The in situ temperature monitoring of hot components in harsh environments remains a challenging task. In this study, SiBCN thin-film resistance grids with thicknesses of 1.8 μm were fabricated on alumina substrates via direct writing. Owing to their dense microscopic morphology and extremely high graphitisation level, the produced SiBCN films exhibited large high-temperature oxidation resistance and electrical conductivity. The resistance–temperature, stability, and repeatability characteristics of these films were examined in an aerobic environment at temperatures up to 800 °C. The obtained results revealed that the thermistor resistance decreased monotonously with increasing temperature from room temperature to 800 °C. The SiBCN film resistance variations observed during repeated temperature cycling in the regions of 505–620 °C and 610–720 °C were 0.09% and 1.7%, respectively. The high cyclability and stability of the SiBCN thin film thermistor suggested its potential applicability for the in situ temperature monitoring of hot components in harsh environments.  相似文献   
7.
《Ceramics International》2022,48(18):26378-26386
In this work different lead-free multilayered structures, composed of perovskite BaTiO3 and spinel NiFe2O4 thin layers, were obtained by solution deposition method. Structural characterization of the sintered thin films confirmed the well-defined layered structure with overall thickness from 160 to 600 nm, crystalline nature of perovskite BaTiO3 and spinel NiFe2O4 phases without secondary phases (after sintering below 900 °C) and grains on nanometer scale. Dielectric properties of the multiferroic multilayer BaTiO3/NiFe2O4 thin films were analyzed in temperature and frequency range from 30 °C to 200 °C and 100 Hz to 1 MHz, respectively. In comparison to the pure BaTiO3 films, the introduction of ferrite layer reduces dielectric response and increases low frequency permittivity dispersion of the multilayer thin films. The multilayer samples have shown relatively low dielectric loss with stronger contribution of conductivity at higher temperatures, and characteristic broad peak representing “relaxation” of the interface charge accumulation.  相似文献   
8.
通过定义一个简单的薄煤层模型,在不断增加煤层中垂直裂缝数量的条件下,利用基于分裂节点的有限元数值方法模拟了含有不同条数裂隙煤层的地震反射波场;通过与不含裂缝、各向同性薄煤层反射的多波波场对比分析发现:裂缝的存在会对煤层的反射产生影响,但裂缝密度低时影响微弱,裂缝密度增加到一定程度后会出现类似调谐作用的反射能量干涉加强;裂缝密度进一步升高,对煤层反射的影响主要反映在高频成分的增加,对振幅影响较弱,说明煤层的反射强度主要受薄层的干涉作用影响较大;从理论地震波场分析的角度证明了薄煤层含裂缝的不可忽视性及反演的可能性。  相似文献   
9.
Pb(NdxZr0.52Ti0.48)O3 (PNZT) (x = 0%, 1%, 2%, 3%, 4%, 5%) thin films were prepared by sol-gel process to investigate the effects of neodymium substitution on crystalline orientation, microstructure and electric properties of lead zirconate titanate (PZT) films. X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis showed that PNZT films with Nd doping concentration below 3% exhibited dense perovskite structure with (100) preferred orientation. The average grain size of PNZT films decreased as the Nd substitution increased. The maximum dielectric constant, remnant polarization and minimum coercive field were obtained in 2% Nd-doped PZT films. Fatigue resistance was also improved significantly with 2% Nd dopant.  相似文献   
10.
This study offers new insights into two-lift deposition of mature fine tailings under atmospheric drying. The interaction of newly added lift and former lift(s) was evaluated using column experiments in terms of volumetric water content, electrical conductivity (EC), hydraulic conductivity, geochemistry and microstructure. Water content and EC followed the same trend and decreasing of water content appears to be responsible for significant reduction in EC. Evaporation on top of the column reduced the water content to almost zero. The obtained results support the coupling between the hydraulic and chemical processes that should be considered by active operators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号