首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22999篇
  免费   1974篇
  国内免费   1170篇
电工技术   923篇
综合类   1777篇
化学工业   8029篇
金属工艺   1536篇
机械仪表   833篇
建筑科学   2854篇
矿业工程   457篇
能源动力   593篇
轻工业   670篇
水利工程   390篇
石油天然气   747篇
武器工业   158篇
无线电   1477篇
一般工业技术   3604篇
冶金工业   690篇
原子能技术   247篇
自动化技术   1158篇
  2024年   39篇
  2023年   376篇
  2022年   603篇
  2021年   758篇
  2020年   713篇
  2019年   641篇
  2018年   624篇
  2017年   849篇
  2016年   717篇
  2015年   827篇
  2014年   1163篇
  2013年   1323篇
  2012年   1568篇
  2011年   1648篇
  2010年   1313篇
  2009年   1392篇
  2008年   1189篇
  2007年   1429篇
  2006年   1337篇
  2005年   1145篇
  2004年   939篇
  2003年   823篇
  2002年   717篇
  2001年   634篇
  2000年   480篇
  1999年   385篇
  1998年   337篇
  1997年   324篇
  1996年   268篇
  1995年   222篇
  1994年   202篇
  1993年   156篇
  1992年   195篇
  1991年   203篇
  1990年   179篇
  1989年   138篇
  1988年   53篇
  1987年   36篇
  1986年   28篇
  1985年   44篇
  1984年   41篇
  1983年   22篇
  1982年   28篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The main drawback of bioglasses is their restricted use in load bearing applications and the consequent need to develop stronger glassy materials. This has led to the consideration of oxynitride glasses for numerous biomedical applications. This paper investigated two different types of glasses at a constant cationic ratio, with and without nitrogen (a N containing and a N-free glass composition) to better understand the effect of N on the biological properties of glasses. The results revealed that the addition of N increased the glass transition temperature, isoelectric point (IEP) and slightly increased wettability. Moreover, compared to N including glass, N-free glass exhibited better anti-bacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), two key bacteria that infect implants. In summary, these in vitro results indicated that amine functional groups existing in N containing glasses which are missing in N-free glasses, caused a slight difference in wetting behavior and a more obvious change in isoelectric point and in bacterial response. N-free glasses exhibited better inhibitory results both against E. coli and S. aureus compared to N including glass suggesting that oxygen rich glasses should be further studied for their novel antibacterial properties.  相似文献   
2.
Biomaterials having photoluminescent properties play a crucial role in real-time bioimaging after in vivo implantation. In this study, photoluminescence properties and decay characteristics of the borate-based 13–93B3 glasses containing different concentrations of cerium, gallium, and vanadium oxides were investigated for biomedical applications. The borate-based bioactive glass powders were prepared using melt-quench technique and size reduction was performed through planetary ball milling. Bioactivity of the prepared powders was investigated in simulated body fluid at 37 °C under static conditions. The photoluminescent properties and decay kinetics of the as-prepared and the SBF-treated bioactive glass powders were analyzed by steady-state and time-resolved photoluminescence measurements. Results revealed that the cerium activated glasses exhibited an intense luminescence centered at 538 nm. Broad-band emission of the gallium and vanadium doped samples was centered at 440 and 572 nm, respectively. All of the SBF-treated glasses exhibited enhanced lifetimes and bi-exponential decays both in nanosecond and microsecond regime measurements. It was concluded that depending on the dopant concentration, bioactive glass particles prepared in the study showed remarkable photoluminescence and have potential to be used in bioimaging applications.  相似文献   
3.
For the purpose of developing biodegradable magnesium alloys with suitable properties for biomedical applications, Mg–Zn–Ca–Cu metallic glasses were prepared by copper mold injection methods. In the present work, the effect of Cu doping on mechanical properties, corrosion behavior, and glass-forming ability of Mg66Zn30Ca4 alloy was studied. The experimental findings demonstrated that the incorporation of Cu decreases the corrosion resistance of alloys, but increases the microhardness and degradation rate slightly. However, the addition of a trace amount of Cu can make the samples have antibacterial properties. Therefore, Mg–Zn–Ca–Cu has great advantages in clinical implantation and is the potential implant material.  相似文献   
4.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
5.
《Ceramics International》2021,47(24):34845-34850
The interfacial delamination of electrode/ceramic multilayer structure will seriously damage the reliability of low temperature co-fired ceramic (LTCC) module in practical applications. In this work, three kinds of glasses employed in Au electrode are designed and prepared to study the abnormal expansion and delamination process in the Au/ceramic LTCC multilayer structure. The interfacial delamination in the co-fired structure is found to be attributed to the abnormal expansion of glass in respect to Au electrode at high temperature, which is originated from the enlarged closed pores during the co-firing process. This conclusion is further confirmed by co-firing the sample in a low-pressure condition. The mechanism and elimination of interfacial delamination here provides a feasible solution for the design of novel glasses in Au electrode for LTCC applications.  相似文献   
6.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
7.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
8.
9.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
10.
Expansion microscopy combined with single-molecule localization microscopy (ExSMLM) has a potential for approaching molecular resolution. However, ExSMLM faces multiple challenges such as loss of fluorophores and proteins during polymerization, digestion or denaturation, and an increase in linkage error arising from the distance between the fluorophore and the target molecule. Here, we introduce a trifunctional streptavidin to link the target, fluorophore and gel matrix via a biotinylizable peptide tag. The resultant ExSMLM images of vimentin filaments demonstrated high labeling efficiency and a minimal linkage error of ∼5 nm. Our ExSMLM provides a simple and practical means for fluorescence imaging with molecular resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号