首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122037篇
  免费   10775篇
  国内免费   7946篇
电工技术   11449篇
技术理论   2篇
综合类   11135篇
化学工业   14871篇
金属工艺   4557篇
机械仪表   7353篇
建筑科学   13359篇
矿业工程   4788篇
能源动力   2812篇
轻工业   7933篇
水利工程   4714篇
石油天然气   4423篇
武器工业   2000篇
无线电   18244篇
一般工业技术   11454篇
冶金工业   4522篇
原子能技术   2982篇
自动化技术   14160篇
  2024年   200篇
  2023年   3953篇
  2022年   3956篇
  2021年   4382篇
  2020年   4316篇
  2019年   4950篇
  2018年   2442篇
  2017年   3910篇
  2016年   4314篇
  2015年   4993篇
  2014年   8239篇
  2013年   6816篇
  2012年   8728篇
  2011年   8710篇
  2010年   6445篇
  2009年   8062篇
  2008年   8653篇
  2007年   7799篇
  2006年   7209篇
  2005年   5378篇
  2004年   4624篇
  2003年   3370篇
  2002年   2898篇
  2001年   2627篇
  2000年   2334篇
  1999年   1863篇
  1998年   1222篇
  1997年   1092篇
  1996年   1000篇
  1995年   794篇
  1994年   751篇
  1993年   832篇
  1992年   755篇
  1991年   680篇
  1990年   564篇
  1989年   552篇
  1988年   391篇
  1987年   280篇
  1986年   217篇
  1985年   129篇
  1984年   125篇
  1983年   79篇
  1982年   68篇
  1981年   29篇
  1980年   13篇
  1979年   2篇
  1965年   4篇
  1959年   2篇
  1957年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
文章率先提出一种新型防屈曲高强钢腹板可更换钢连梁(简称“新型钢连梁”):腹板采用高强钢,可提高钢连梁的屈服抗剪强度,连梁变形减小,从而减小可更换结构整体变形,便于更换;加劲肋紧贴腹板(但不焊接)提供约束,仅与上下翼缘焊接,可减少60%以上的焊接量。其次,设计并开展了11个试件的拟静力试验,研究了加劲肋间距(规范限值dmax、0.85dmax)、腹板厚度(6mm、8mm)、腹板钢材强度(Q460、Q550)和构造形式(加劲肋与腹板贴紧或焊接)等参数对新型钢连梁抗震性能的影响。试验结果表明:试件均发生剪切破坏;满足加劲肋间距限值的新型钢连梁,滞回曲线饱满,峰值时腹板未发生鼓曲且极限转角均超过0.1rad,大于规范限值0.08rad,表现出良好的耗能和变形能力;缩小加劲肋间距、增加腹板厚度或提高腹板钢材强度,新型钢连梁刚度及承载力提高;新型钢连梁峰值承载力较传统构造试件低约5%。最后,基于试验结果建立了有限元模型并开展了分析,研究结果表明:对腹板采用Q460、Q550高强钢材的新型钢连梁,峰值承载力计算时超强系数建议取1.43(长度比为0.5~1.0)或1.39(长度比为1.0~1.6)、1.25,以期为实际工程设计提供依据。  相似文献   
2.
针对于可溶性陶瓷纤维给出一种表面改性的工艺,探讨了表面改性对于可溶性陶瓷纤维抗拉强度、加热永久线变化、导热系数性能的影响,得出了其对耐候性有利的评价。同时,探讨了表面改性对于可溶性陶瓷纤维降解性的影响,给可溶性陶瓷纤维长期储存提供了解决方案。  相似文献   
3.
应用半导体器件的电阻电容计算理论和SILVACO ATLAS软件,在综合考虑载流子渡越时间和电阻电容延迟时间对增益截止频率的影响下设计了一种InP/InGaP/GaAsSb/InGaAsSb/InP双异质结双极晶体管(DHBT)结构。该结构中在基区与发射区之间加入P型半导体层以降低基区与发射区之间的电子势垒,并通过引入梯度渐变材料及优化掺杂分布提高基区电场、增强集电区中易趋近于零区域的电场,器件的电流增益截止频率得到显著提升。此外,还列出了InGaP和InGaAsSb材料的禁带宽度和电子亲合势、P型GaAs_(0.51)Sb_(0.49)和InGaAsSb材料的电子迁移率的近似计算公式。  相似文献   
4.
为提高白啤特征香气水平,研究了酵母菌种、酵母代数、酵母接种量、发酵温度、冷麦汁充氧量5种发酵工艺参数对白啤4-乙烯基愈创木酚(4-vinylguaiacol,4-VG)含量的影响。结果表明,选择酵母菌种为NO.3、0代酵母、酵母接种量为10百万个/mL、发酵温度为20℃、冷麦汁充氧量为22 mg/L的发酵工艺,白啤的4-VG含量有显著提高,为通过改进发酵工艺提高白啤4-VG含量提供了理论依据。  相似文献   
5.
为了探究不同絮凝剂对水中Cr(Ⅵ)的去除效果,比较了聚合硫酸铁、聚合氯化铝、聚丙烯酰胺、Fe Cl3对Cr(Ⅵ)的去除效果,通过效能对比以及成本分析得出了最合适的絮凝剂。通过改变反应温度、体系的初始p H值、絮凝剂的初始浓度和反应时间来探究聚合硫酸铁去除Cr(Ⅵ)效果的影响后,再进行均匀设计和响应面优化试验。结果表明,反应温度30℃、絮凝剂浓度为150mg·L-1、pH值为7、反应时间9min,此时Cr(Ⅵ)的去除效率最高为68.4%;絮凝剂浓度、初始p H值、反应时间对Cr(Ⅵ)去除效果影响显著性为絮凝剂浓度>反应时间>初始pH值。响应面模型预测在最佳反应条件下,Cr(Ⅵ)的去除效率可达70.5%,实验结果为69.8%,二者接近,表明模型有效。  相似文献   
6.
感知器官对于许多动物必不可少,尤其是生活在水下的生物。该文以聚偏二氟乙烯(PVDF)为材料,模仿水生动物海豹的触须设计制备了一种表面四电极PVDF压电纤维仿生柔性传感器。利用激振源测试所制备的传感器性能,包括输出不同的波形测试对不同激励的感知,对水动力的感知及对水下运动物体方向的感知。实验结果表明,该传感器对不同激励的感知性能很好,速度检测极限可达0.15 mm/s,且有良好的方向性检测能力,对水下情况感知的应用前景广。  相似文献   
7.
白垩纪是地球历史上一个持续时间较长的典型温室气候期,受区域古地形叠加影响,在东亚地区促成了广泛的干旱气候带,并伴有大面积出露的古沙漠和蒸发岩沉积,而楚雄盆地上白垩统江底河组即为该时期形成的一套干盐湖相红色碎屑岩夹膏盐沉积。通过光学显微镜和扫描电镜(SEM)及能谱(EDS)分析,对江底河组砂岩石英颗粒结构形态及表面微形貌特征进行研究。结果显示,楚雄盆地江底河组砂岩的石英颗粒具有高磨圆度和分选性、碟形撞击坑、“沙漠漆”以及强化学作用溶蚀孔(洞)群等现象,展现出风成砂的典型特征。同时基于石英颗粒表面机械作用、化学(溶蚀、沉淀)作用及其组合特征,系统总结了石英颗粒在不同沉积阶段和环境背景下,其表面微形貌特征的演化规律。这项研究有助于对盐湖环境中风成砂的特征以及风成沉积和水成沉积相互作用机制的认识。   相似文献   
8.

该文基于掺钪AlN薄膜制备了高次谐波体声波谐振器(HBAR),研究了钪(Sc)掺杂浓度对AlN压电薄膜材料特性及器件性能的影响。研究表明,当掺入Sc的摩尔分数从0增加到25%时,压电应力系数e33增加、刚度 下降,导致Al1-xScxN压电薄膜的机电耦合系数 从5.6%提升至15.8%,从而使HBAR器件的有效机电耦合系数 提升了3倍。同时,当Sc掺杂摩尔分数达25%时,Al1-xScxN(x为Sc掺杂摩尔分数)压电薄膜的声速下降13%,声学损耗提高,导致HBAR器件的谐振频率和品质因数降低。  相似文献   

9.
为了研究地应力对凿岩爆破的影响,采用DDA方法模拟爆炸应力波作用下考虑地应力条件时的单孔和多孔凿岩爆破破岩过程。模拟发现,随着初始地应力水平的增加,裂纹扩展半径和破岩区域面积减小,裂纹发育主方向趋于地应力的最大主应力方向,初始地应力对裂纹的抑制和引导作用明显;初始地应力水平的增加,对拉伸裂纹的抑制作用更为显著,从而降低了拉伸破坏对爆破破岩的贡献。模拟也表明,在初始地应力存在的条件下,通过对爆破载荷和炮孔布置进行针对性的优化,可以克服地应力带来的影响,并取得预期的爆破效果。本研究对地应力条件下的凿岩爆破工程具有理论和参考意义。  相似文献   
10.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号