首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21534篇
  免费   1266篇
  国内免费   739篇
电工技术   248篇
技术理论   1篇
综合类   892篇
化学工业   5630篇
金属工艺   1379篇
机械仪表   472篇
建筑科学   691篇
矿业工程   416篇
能源动力   1088篇
轻工业   4190篇
水利工程   202篇
石油天然气   1021篇
武器工业   203篇
无线电   766篇
一般工业技术   3445篇
冶金工业   1045篇
原子能技术   207篇
自动化技术   1643篇
  2024年   48篇
  2023年   290篇
  2022年   444篇
  2021年   542篇
  2020年   567篇
  2019年   590篇
  2018年   529篇
  2017年   608篇
  2016年   539篇
  2015年   570篇
  2014年   1073篇
  2013年   1247篇
  2012年   1263篇
  2011年   1948篇
  2010年   1350篇
  2009年   1388篇
  2008年   1202篇
  2007年   1354篇
  2006年   1158篇
  2005年   1008篇
  2004年   877篇
  2003年   744篇
  2002年   653篇
  2001年   469篇
  2000年   440篇
  1999年   386篇
  1998年   335篇
  1997年   298篇
  1996年   282篇
  1995年   266篇
  1994年   221篇
  1993年   161篇
  1992年   136篇
  1991年   107篇
  1990年   80篇
  1989年   68篇
  1988年   61篇
  1987年   40篇
  1986年   35篇
  1985年   31篇
  1984年   27篇
  1983年   21篇
  1982年   20篇
  1981年   19篇
  1980年   12篇
  1979年   11篇
  1978年   3篇
  1977年   6篇
  1975年   3篇
  1961年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
《Ceramics International》2021,47(21):29908-29918
The cellulose derived carbon/graphene/ZnO aerogel composite was prepared as an electrode in order to investigate the electrochemical properties. Carbon aerogel was synthesized using paper as an available cellulose source, and the composite was obtained through a new and simple preparation method including the immersion of monolithic carbon aerogel in graphene oxide/Zn2+ suspension and subsequent chemical reduction and freeze drying. The morphology, functional groups and crystalline structure of the samples were studied with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction Spectroscopy (XRD), respectively. Electrochemical performance of the prepared binder free electrodes was examined using Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). The data revealed that flexible carbon/graphene/ZnO composite resulted in a low density (0.035 g cm−3) electrode with the capacitance of 900 mF cm−2 at a high current density of 10 mA cm−2, lower IR drop and high cyclic stability (capacitance retention of 96%) after 1000 cycles, at 10 mA cm−2. These features were due to the presence of 3D porous conductive network, highly reduced graphene oxide, and the formation of ZnO nanoparticles on graphene sheets. Moreover, polyaniline (PANI) was introduced to carbon/graphene/ZnO composite electrode using electro-oxidation method at different reaction time and aniline concentration in order to achieve remarkably improved capacitance of 2500 mF cm−2 (at 10 mA cm−2) and low charge transfer resistance. Also, after the supercapacitor device assembly, the capacitance was retained. Based on the results, the synthesized composite is a promising material for new generation of lightweight freestanding electrodes with the high electrochemical performance.  相似文献   
2.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
3.
The influence of surface topography on cellular behaviour and its importance for the development of three-dimensional scaffolds for bone tissue engineering are a topic of growing interest. To date, the introduction of topographical patterns into the surface of 3D porous ceramic scaffolds has proven difficult, due partly to the brittle nature of ceramic materials as well as the currently available fabrication technologies. In this study, a grooved pattern was introduced into the surface of 3D multilayer porous ceramic scaffolds by the chemical etching technique. The patterned scaffolds were characterised by X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) and Digital Holographic Microscopy (DHM). Their bioactivity was also evaluated in vitro by immersion in simulated body fluid (SBF) for 12 h, 1, 7, 14 and 21 days. Scaffolds were constituted mainly with a mixture of the calcium pyrophosphate (Ca2O7P2) and β-tricalcium phosphate (Ca?(PO?)?) phases. The pyrophosphate on the external layer was dissolved as a result of the etching process, leaving grooves on the surface. Ridges and grooves were nano-/micrometric, with dimensions of around 900 nm–1.5 μm in width and 200 nm–300 nm in depth. Moreover, the mechanical properties and bioactive capacity of the patterned scaffolds were not affected by chemical etching, making them suitable to be used in bone tissue engineering.  相似文献   
4.
《Ceramics International》2021,47(20):28976-28984
In the era of Photonics, design and development of novel rare earth ion-doped quantum dots (QDs) for optoelectronic applications has gained significant interest owing to their outstanding characteristics. Simultaneously, the creation of a new class of photocatalytic materials on the nanoscale is also imperative for environmental purification. Thus, we report on wet chemical synthesis, the structural, morphological, and optical characteristics, fluorescence, and hydrogen evolution of ZnS:Eu (0, 2, 4, and 6 at%) QDs for optoelectronic and photocatalytic applications. Comprehensive structural studies depicted that Eu3+ ions were efficiently substituted into the host matrix and altered the original structure of the ZnS compound. The emission spectra of the ZnS:Eu QDs exhibited distinctive red fluorescence owing to the transition of dopant ions in 5D0 - 7F1, 5D0 - 7F2, 5D0 - 7F3, and 5D0 - 7F4 energy levels of the 4f orbital of the Eu3+ ions. Moreover, the photocatalytic properties of ZnS:Eu (6 at%) QDs possess better catalytic efficiency toward hydrogen evolution through a water splitting mechanism under simulated sunlight irradiation. The observed photocatalytic phenomenon in the synthesized samples agreed well with the luminescence properties exhibited by the QDs.  相似文献   
5.
Engineering simulations have opened several gates for today’s chemical engineers. They are powerful tools to provide technical content as physics-based numerical solvers. Augmented reality (AR) and virtual reality (VR), on the other hand, are already underway to digitize environments in many fields. The combination of AR/VR environments and simulations in engineering education has been attracting widespread interest. Literature has demonstrated a massive amount of digital educational environments in several contexts as being complementary to conventional educational methods. Nevertheless, hosting technical content produced by engineering simulations with educational AR/VR is still challenging and requires expertise from multiple disciplines throughout the technical development. Present work provides a facile and agile methodology for low-cost hardware but content-wise rich AR software development. Inspired by the Covid-19 pandemic, a case study is developed to teach chemical-engineering concepts using a liquid-soap synthesis process. Accordingly, we assess and conclude the digital development process to guide inexperienced developers for the digitalization of teaching content. The present contribution serves as an example of the power of integrating AR/VR with traditional engineering simulations for educational purposes. The digital tool developed in this work is shared in the online version.  相似文献   
6.
A meso-scale jet flame model was established for the flame ports of domestic gas stoves. The influences of hydrogen addition ratio (β = 0%–25%) on the combustion limits were explored. The results show that with the increase of hydrogen addition ratio, the blow-off limit increases obviously, while the extinction limit decreases slightly, namely, the combustible range expands significantly. Quantitative analysis was carried out in terms of chemical effect and thermal effect. It was found that hydrogen addition will reduce O2 fraction in the pre-mixture for a constant equivalence ratio. Under near-extinction limit condition, since the flame is located at the nozzle exit, the external O2 cannot be entrained into or diffuse into the upstream of the flame, which leads to the decrease of reaction rate. However, for the near-blow-off cases, the external O2 can be entrained and diffuse into the flame, which compensates the difference of O2 content in the pre-mixture. Therefore, the combustion reaction is enhanced by hydrogen addition because more H radicals can be produced. In addition, as the flame is located closer to the tube with the increase of hydrogen addition ratio, heat transfer between flame and tube wall is augmented and the preheating of fresh mixture is strengthened by the inner tube wall. This heat recirculation effect becomes especially notable in low velocity cases. In conclusion, the extension of extinction limit by hydrogen addition is attributed to the thermal effect, while the increase of blow-off limit is mainly due to the intensification of chemical effect.  相似文献   
7.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
8.
《Ceramics International》2022,48(10):13440-13451
If the entropy extrapolation of supercooled liquids (SCL) suggested by Kauzmann was correct, then they would have the same entropy as their stable crystalline phase at a certain low temperature, below the laboratory glass transition (Tg), known as the Kauzmann temperature (TK). Extrapolating even further, the liquid entropy would be null at a temperature above absolute zero, violating the Third Law of Thermodynamics and constituting a paradox. Several possibilities have been proposed over the past 70 years to solve this paradox with different degrees of success. Our objective here is to access liquid dynamics at deep supercoolings to test the so-called crystallization solution to the paradox. By comparing the relaxation and crystallization kinetics determined above Tg and extrapolated down to TK, a possible solution would be that the crystallization time is shorter than the relaxation time, which would mean that a SCL cannot reach the TK. In this case, the liquid stability limit or kinetic spinodal temperature (Tks) should be higher than TK. We tested two fragile glass-forming liquids (diopside and wollastonite) and two strong liquids (silica and germania). For the fragile substances, Tks ? TK, hence such a supercooled liquid cannot exist at TK, and the entropy crisis is averted. On the other hand, the results for the strong liquids were inconclusive. We hope the findings of this work encourage researchers to further investigate the liquid dynamics of different strong glass-forming systems at deep supercoolings.  相似文献   
9.
Ceria (CeO2) particles are prevalent polishing abrasive materials. Trivalent lanthanide ions are the popular category of dopants for enriched surface defects and thus improved physicochemical properties, since they are highly compatible with CeO2 lattices. Herein, a series of dendritic-like mesoporous silica (D-mSiO2)-supported samarium (Sm)-doped CeO2 nanocrystals were synthesized via a facile chemical precipitation method. The relation of the structural characteristics and chemical mechanical polishing (CMP) performances were investigated to explore the effect of Sm-doping amounts on the D-mSiO2/SmxCe1?xO2?δ (x = 0–1) composite abrasives. The involved low-modulus D-mSiO2 cores aimed to eliminate surface scratch and damage, resulting from the optimized contact behavior between abrasives and surfaces. The trivalent cerium (Ce3+) and oxygen vacancy (VO) at CeO2 surfaces were expected to be reactive sites for the material removal process over SiO2 films. The optimal oxide-CMP performances in terms of removal efficiency and surface quality were achieved by the 40% Sm-doped composite abrasives. It might be attributed to the high Ce3+ and VO concentrations and the enhancement of tribochemical reactivity between CeO2SiO2 interfaces. Furthermore, the relationship between the surface chemistry, polishing performance as well as the actual role in oxide-CMP of the D-mSiO2/SmxCe1?xO2?δ abrasives were also discussed.  相似文献   
10.
The objective of this study was to investigate chemical, technological, and sensory quality of tef in products made exclusively with tef flour and tef flour associated with other flours. The selection of the studies and the extraction of information were carried out through research in several databases. Tef flour was used in cakes, cookies, breads, cupcakes, muffins, and extruded snacks. Bread was the most evaluated product with tef flour associated with other flours or exclusively. Most of the outcomes were with tef (5–50%) associated with other flours. Increased levels of fibers, minerals, antioxidant capacity, and flavonoids were noted according to the percentage of tef. Technological characteristics demonstrated that these products showed intermediate final quality, due to the characteristics of volume, specific volume, firmness, and luminosity. Regarding sensory quality, studies that used (5–35%) tef flour associated with other flours were well-accepted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号