首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5608篇
  免费   570篇
  国内免费   367篇
电工技术   65篇
综合类   204篇
化学工业   1548篇
金属工艺   669篇
机械仪表   254篇
建筑科学   394篇
矿业工程   131篇
能源动力   299篇
轻工业   424篇
水利工程   69篇
石油天然气   143篇
武器工业   19篇
无线电   574篇
一般工业技术   1248篇
冶金工业   201篇
原子能技术   84篇
自动化技术   219篇
  2024年   13篇
  2023年   185篇
  2022年   114篇
  2021年   205篇
  2020年   187篇
  2019年   226篇
  2018年   190篇
  2017年   223篇
  2016年   191篇
  2015年   176篇
  2014年   246篇
  2013年   397篇
  2012年   324篇
  2011年   425篇
  2010年   292篇
  2009年   337篇
  2008年   313篇
  2007年   367篇
  2006年   285篇
  2005年   210篇
  2004年   208篇
  2003年   236篇
  2002年   232篇
  2001年   219篇
  2000年   177篇
  1999年   145篇
  1998年   118篇
  1997年   77篇
  1996年   51篇
  1995年   44篇
  1994年   34篇
  1993年   22篇
  1992年   16篇
  1991年   11篇
  1990年   8篇
  1989年   10篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1977年   1篇
  1951年   2篇
排序方式: 共有6545条查询结果,搜索用时 15 毫秒
1.
The construction and examination of meso-structural finite element models of a Chemical-Vapor-Infiltrated (CVI) C/SiC composite is carried out based on X-ray microtomography digital images (IB-FEM). The accurate meso-structural features of the C/SiC composites, which are consisted of carbon fiber tows and CVI-SiC matrix, in particular the cavity defects, are reconstructed. With the IB-FEM, the damage evolution and fracture behaviors of the C/SiC composite are investigated. At the same time, an in situ tensile test is applied to the C/SiC composite under a CT real-time quantitative imaging system, aiming to investigate the damage and failure features of the material as well as to verify the IB-FEM. The IB-FEM results indicate that material damage initially occur at the defects, followed by propagating toward the fiber-tow/SiC-matrix interfaces, ultimately, combined into macro-cracks, which is in good agreement with the in situ CT experiment results.  相似文献   
2.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
3.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   
4.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
5.
《Ceramics International》2022,48(4):5083-5090
Directional lamellar porous titanium scaffolds are widely used as bone implant bearing materials because of their anisotropic pore structure. Their mechanical properties can be effectively improved by enhancing the strength of pore walls through the introduction of ceramics. In this work, porous titanium implants were prepared by freeze casting combined with TiH2 decomposition. The graphene was introduced into the pore walls of porous titanium, which could transform into titanium carbide (TiC) in situ upon sintering. TiC was evenly distributed in the lamellar pore walls, and the interface was well bonded. The compression strength of the fabricated implants was up to 389.94 MPa when the graphene content was 3 wt%, which was 377.8% times as high as the porous titanium. The crack propagation was resisted by TiC because of the “pinning” effect on the pore wall. Some of TiC were pulled out from the matrix, and others were fractured. The strength of the fabricated implants was improved significantly by the large consumption of fracture energy. Also, fabricated porous titanium implants with TiC are suitable for bone implantation.  相似文献   
6.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
7.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
8.
In recent years,iron(Fe)based degradable metal is explored as an alternative to permanent fracture fixation devices.In the present work,copper(Cu)is added in Fe-Mn system to enhance the degradation rate and antimicrobial properties.Fe-Mn-xCu(x=0.9,5 and 10 wt.%)alloys are prepared by the melting-casting-forging route.XRD analysis confirms austenite phase stabilization due to the presence of Mn and Cu.As predicted by Thermo-Calc calculations,Cu rich phase precipitations are noticed along the austen-ite grain boundaries.Degradation behaviours of Cu added Fe-Mn alloys are investigated through static immersion and electrochemical polarization where enhanced degradation is found for higher Cu added alloys.When challenged against E.Coli bacteria,the Fe-Mn-Cu alloy media extract shows a significant bac-tericidal effect compare to the base alloy.In vitro cytocompatibility studies,as determined using MG63 and MC3T3-E1 cell lines,indicate increased cell density as a function of time for all the alloys.When implanted in rabbit femur,the newly developed alloy does not show any kind of tissue necrosis around the implants.Better osteogenesis and higher new bone formation are observed with Fe-Mn-10Cu alloy as evident from micro-computed tomography(μ-CT)and fluorochrome labelling.  相似文献   
9.
以川南某浓香型白酒生产企业50年窖龄且发酵正常的窖泥为研究对象。通过高通量测序技术分析细菌群落结构以及放线菌群落结构,利用原位分离法从中分离得到2株放线菌,结合形态鉴定、生理生化和16S rRNA基因序列比对分析确定菌种属,并对其进行耐酸、耐乙醇特性研究,基于风味导向思路,分别对2株菌进行液态培养和固态培养,采用顶空固相微萃取法和气相色谱质谱联用对发酵挥发性产物进行分析,为放线菌的相关研究和应用提供理论参考。结果显示,放线菌在该窖泥样品含有较高操作分类单元(operational taxonomic unit,OTU),相对丰度达(10.7±3.4)%,且主要分布于链霉菌亚目(Streptomycineae)和科里氏杆菌亚目(Coriobacterineae)。采用原位分离法分离放线菌,将分离得到的2株菌编号为A1、A2,菌株A1鉴定为桑氏链霉菌(Streptomyces sampsonii),菌株A2鉴定为鲁地链霉菌(Streptomyces rutgersensis)。菌株A1、A2均可在pH>4.3或乙醇体积分数<6%的环境中生长。菌株A1在液态和固态发酵条件下都会产生大量土臭素以及萜烯类物质,菌株A2在液态条件下能产生多种酯类,其中己酸乙酯相对含量(5.384%)较高,而固态条件下能够检测出大量的3-羟基-2丁酮、2,3-丁二醇和吡嗪类物质。  相似文献   
10.
《Ceramics International》2021,47(21):30051-30060
Hydroxyapatite (HA) is a highly regarded synthetic bone graft material. Porous HA ceramics blocks are used to substitute harvested natural bone grafts. Being similar to bone mineral, HA material integrates with the host bone through surface osteointegration and slowly resorb along with the natural bone remodeling process. The blocks in use currently have random and tortuous pore structures. The present work explores the usefulness of cage-like HA ceramic design with end-to-end open pores, with the help of in vitro cell culture methods. Such a structure, on implantation, will take up the blood factors and cells and host the bone remodeling process inside the bulk of the cage, leading to early healing. In the study, HA samples with aligned through-pores were prepared and explored in vitro, with a focus on how the pores host the cells inside and to what level the cells maintain their activity. Human osteoblast-like cells (HOS) were used, at different seeding and culturing approaches. Cell seeding was done through (i) conventional large volume cell suspension, (ii) a confined mini chamber with a limited volume of cell suspension, and (iii) placing a concentrated drop of cell suspension directly on top of the scaffold. The third approach gave the best cell adhesion and proliferation, and hence used for further explorations. A dynamic culture system was designed in-house by bifurcating the cell culture wells using vertical inserts, holding the samples horizontally with their ends open to both sides, and making the media flow across using a rocker platform. The HOS cell adhesion, viability and proliferation were tested in the HA cages, in static and dynamic culture conditions, with conventional porous ceramics as the control. The cell infiltration was deeper and the cell viability over a period of 7 days was significantly higher in dynamic culture conditions in the test samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号