首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22703篇
  免费   2577篇
  国内免费   938篇
电工技术   481篇
综合类   1169篇
化学工业   2763篇
金属工艺   1130篇
机械仪表   545篇
建筑科学   1336篇
矿业工程   5942篇
能源动力   832篇
轻工业   553篇
水利工程   216篇
石油天然气   1014篇
武器工业   71篇
无线电   1405篇
一般工业技术   1231篇
冶金工业   5164篇
原子能技术   1328篇
自动化技术   1038篇
  2024年   35篇
  2023年   277篇
  2022年   559篇
  2021年   720篇
  2020年   758篇
  2019年   647篇
  2018年   626篇
  2017年   797篇
  2016年   980篇
  2015年   883篇
  2014年   1453篇
  2013年   1673篇
  2012年   1559篇
  2011年   1801篇
  2010年   1245篇
  2009年   1217篇
  2008年   980篇
  2007年   1133篇
  2006年   1090篇
  2005年   998篇
  2004年   882篇
  2003年   883篇
  2002年   684篇
  2001年   642篇
  2000年   629篇
  1999年   536篇
  1998年   451篇
  1997年   380篇
  1996年   336篇
  1995年   316篇
  1994年   254篇
  1993年   152篇
  1992年   165篇
  1991年   95篇
  1990年   90篇
  1989年   70篇
  1988年   51篇
  1987年   47篇
  1986年   37篇
  1985年   11篇
  1984年   11篇
  1983年   6篇
  1982年   14篇
  1981年   17篇
  1980年   6篇
  1978年   2篇
  1975年   3篇
  1968年   2篇
  1962年   2篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Eliminating the gold preg-robbing effect of carbonaceous matter in carbonaceous gold ores is crucial for gold leaching. In this study, suspension oxidation roasting was proposed to accelerate the decarbonization of carbonaceous gold ore. The characteristics of oxidation reaction process and gas release were analyzed by TG-DTA-FTIR. The phase transformation and microstructure evolution of samples during roasting were analyzed by XRD, SEM and BET. The results show that the gold preg-robbing effect was eliminated after the gasification of carbonaceous matter, and the CaO generated by decomposition of carbonates can effectively capture the SO2. After roasting for 75 min at 650 °C in a 20% O2 atmosphere, the total carbon removal rate reached 99.42%, the distribution of exposed gold increased from 28.85% to 77.10% and the gold leaching efficiency increased from 4.55% to 84.83%. In addition, about 70% sulfur was mainly fixed in the roasted products in the form of sulfate. Therefore, the suspension oxidation roasting process is an efficient and clean pretreatment method for carbonaceous gold ores.  相似文献   
2.
酒钢镜铁山矿运用硐室大爆破处理山头岩体,以便为2号(中)矿体的开采形成良好的覆盖层。由于爆破设计合理,工程质量较好,达到了预期的目的。  相似文献   
3.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
4.
《Ceramics International》2022,48(24):36802-36813
X-type samarium-cadmium co-substituted hexaferrite with compositions Ba2-xSmxCo2CdyFe28-yO46 (0.00 ≤ x ≤ 0.08, and 0 ≤ y ≤ 0.4) were prepared at 1340 °C using a simple heat treatment technique. All heated samples were characterized using FTIR, XRD, SEM, VSM, M?ssbauer, and low-frequency dielectric measurements. XRD analysis of prepared samples shows the formation of X as a major phase along with hematite. The MS value varied from 67.01 Am2/kg to 50.43 Am2/kg; whereas the Hc value changed from 2.95 kA/m to 6.17 kA/m, A high value of MS (67.01 Am2/kg) is observed in the pure sample, and a very low value of Hc (2.95 kA/m) is observed for x = 0.06, y = 0.3 compositions, but Mr/Ms < 0.5 confirm the multi-domain nature of prepared hexaferrites. Hysteresis loops of all samples are narrow, and confirmed that formed samples belong to magnetically soft. Mössbauer spectra of the three samples (S1, S3, and S5) show the existence of doublets. Significantly low values of coercivity, retentivity, and loss tangent in Sm–Cd substituted samples signified those prepared materials can be used to design electromagnets, transformer cores, electric motors, and maybe a potential candidate for lossless low-frequency applications.  相似文献   
5.
《Ceramics International》2022,48(12):16730-16736
Recently, all-inorganic cesium lead-halide perovskites have shown their promise for light emission applications, due to the excellent optical performance. Herein, we report that the initially nonphosphorescent undoped lead-halide Cs4PbBr6 single crystals (SCs) exhibit an ultralong phosphorescence emission under X-ray excitation at low temperatures. It is shown that the dramatic change has been taken place in radioluminescence spectra and the broad-band emission gradually appeared with the decrease of temperature. Below 210 K, the radioluminescence spectra can be deconvoluted into one narrow peak located at 530 nm and two broad peaks centered at 595 nm and 672 nm respectively. Subsequently, the time-dependent radioluminescence spectra in undoped lead-halide Cs4PbBr6 SCs were investigated. The ultralong phosphorescence emission can persist over 120 min at 70 K. We consider that ultralong phosphorescence originates from defect-related emission. To the best of our knowledge, our finding is the first time that undoped Cs4PbBr6 SCs exhibit the phosphorescence emission, which will offer a paradigm to motivate revolutionary applications on perovskite.  相似文献   
6.
A low pressure impactor is used to measure triboelectric charging behavior of metallic nanoparticles. Ag nanoparticles, produced by spark discharge, were impacted onto Pt sputtered targets. The influence of the impaction angle and impaction velocity on the triboelectric charging was investigated. While for perpendicular impaction the charge transfer behavior of previous work was confirmed, the oblique impaction revealed new phenomena. Additional charge transfer was observable, which increases with obliqueness. The possibility of mass transfer between particle and target due to the high-energy collisions was also investigated. SEM characterization and Auger spectroscopy indicate mass transfer from the particle to the target surface.  相似文献   
7.
《Ceramics International》2021,47(24):34521-34528
Aiming at the problem that power density and energy density are difficult to obtain simultaneously under low field, a novel composition (1-x)Na0·5Bi0·5TiO3-xBaZn1/3Ta2/3O3((1-x)NBT-xBZT) was designed and fabricated via solid-state methods. With the addition of BZT, the crystal lattice, structural symmetry, grain size, and dense degree were all increased proved by XRD, Raman, and Archimedes drainage method et al. Because of the enhancement of relaxor behavior, the x=0.10 sample displayed a high permittivity εr of 2871±15% and a low dielectric loss tan δ ≤ 0.025 in the wide temperature range of 60–400 oC. This ceramic also showed maximum recoverable energy density Wd (2.07 J/cm3) with high efficiency η (71.5%) under a low field of 150 kV/cm. Moreover, pulse discharge testing proved that this ceramic possessed both a significant discharge energy density WD (0.96 J/cm3) and a record high power density PD (108.54 MW/cm3). This work provided a promising material for high power and energy applications.  相似文献   
8.
《Ceramics International》2022,48(7):9083-9089
Direct-methane solid oxide fuel cells (DMSOFCs) have recently attracted substantial attention due to their simplified system, reduced cost, and the direct availability of methane fuel obtained from natural gas. Among oxygen-ion conductive materials, doped-ceria such as gadolinium-doped ceria (GDC) or samarium-doped ceria can be incorporated into Ni-based anodes to reinforce their coking resistance, enlarge their electrochemical reaction area, and improve the kinetics of the internal reforming/electrochemical oxidation of methane. To reduce the range of operating temperatures of DMSOFCs while maintaining their performance, the thin film deposition technique of magnetron sputtering was adopted in this work. An Ni-GDC thin-film anode and a Pt thin-film cathode were deposited on scandia-stabilized zirconia (ScSZ) electrolyte supports. This fuel cell was tested with directly supplied methane fuel (3% H2O) at 500 °C. The results demonstrated the effects of the GDC volume fraction in the anode—which was controlled by co-sputtering power—on open circuit voltage and electrochemical performance. The co-sputtered Ni-GDC anode was able to survive through 36-h operation, although there was some performance degradation. Field-emission scanning electron microscopy results revealed no formation of filamentous carbon on the Ni catalysts, despite the fact that both X-ray photoelectron spectroscopy and Raman spectroscopy analyses detected carbon coking. The relatively high performance and resistance to carbon coking of co-sputtered thin-film anode were attributed to its intrinsic small grain size.  相似文献   
9.
《Ceramics International》2022,48(3):3609-3614
This work investigated the effect of replacing Zn2+ ions with Cd2+ ions on the microstructure and electromagnetic properties of NiZnCo ferrites. The studies show that the Cd2+ ions substituted for Zn2+ ions at the A sites (tetrahedral sites) of the ferrite lattice. The large ionic radius of the Cd2+ ions can cause lattice distortion. Concurrently, the low melting point of CdO can effectively reduce the sintering temperature of NiZnCo ferrite, thereby significantly changing the magnetoelectric properties of NiZnCo ferrite. These changes are mainly manifested as the decrease in the saturation magnetization (Ms) from 66.6 to 58.5 emu/g and the increase in coercivity (Hc) from 31.2 to 34.8 Oe. The dielectric constant increases considerably, dielectric loss tanδ gradually decreases from 4.71 to 0.83 at 10 kHz, and DC resistivity ρ decreases considerably from 8.0 × 104 to 1.61 × 104 Ω m. Therefore, the substitution of Cd2+ ions in NiZnCo ferrite provides excellent electrical and magnetic properties, which provide a reference for the development of high-frequency miniaturized electronic equipment.  相似文献   
10.
《Ceramics International》2022,48(9):12014-12027
The formed deposits wear out of refractory wall linings in the rotary kiln and may cause production disturbances. This study describes the chemical composition and mineralogical phase components at the deposit/refractory interface in the rotary kiln for fluxed iron ore pellets production. The main phases of refractory bricks are corundum and mullite, while the deposits mainly contain hematite and silicates. The main phases in the deposit/refractory brick contact zone are hematite, anorthite (CaAl2Si2O8), mullite, corundum, and silicates. Moreover, the hematite phases in the deposit/brick interface averagely contain 6.98 wt% Al and 1.38 wt% Ti. The silicates in the contact zone contain higher aluminium content and lower iron content than the silicates in the deposits. Finally, the thermodynamic analysis indicates that the main phases in the deposits can react with the refractory to form Al2Fe2O6, CaAl2Si2O8, feldspar, and liquid phases lead to the degradation of bricks in the kiln during the iron ore pellets production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号