首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   817篇
  免费   31篇
  国内免费   104篇
电工技术   1篇
综合类   43篇
化学工业   47篇
金属工艺   551篇
机械仪表   16篇
矿业工程   2篇
能源动力   20篇
轻工业   1篇
石油天然气   4篇
武器工业   11篇
无线电   49篇
一般工业技术   153篇
冶金工业   50篇
自动化技术   4篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   16篇
  2020年   20篇
  2019年   15篇
  2018年   16篇
  2017年   20篇
  2016年   17篇
  2015年   19篇
  2014年   60篇
  2013年   43篇
  2012年   39篇
  2011年   52篇
  2010年   29篇
  2009年   51篇
  2008年   44篇
  2007年   57篇
  2006年   56篇
  2005年   30篇
  2004年   35篇
  2003年   34篇
  2002年   36篇
  2001年   29篇
  2000年   38篇
  1999年   35篇
  1998年   24篇
  1997年   31篇
  1996年   29篇
  1995年   20篇
  1994年   16篇
  1993年   15篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有952条查询结果,搜索用时 15 毫秒
1.
The objective of this study is to establish the corrosion behaviour of the most important structural constituents of the aluminium alloy 2017 in orthophosphoric acid solutions containing heteropolyoxomolybdate, tungstate and vanadate. These are potential candidates for replacing toxic hexavalent chromium species in stripping solution for anodic coatings. The corrosion rate of the alloy is estimated with linear polarisation method. It decreases from 0.58 mA cm−2 in uninhibited solution to 0.10 mA cm−2 in a solution containing heteropolyoxomolybdate species. Microscopic studies reveal that heteropolyoxomolybdate species inhibit corrosion of the matrix and intermetallic Al15(Fe,Mn)3(Si,Cu)2 but not Mg2Si. Intermetallic Al2Cu remains not corroded. Heteropolyoxotungstate species virtually do not inhibit the corrosion of the alloy. The solution containing vanadium species is not stable with time and the corrosion rate is not determined. Nevertheless, corrosion of the matrix is inhibited, but intermetallics Al15(Fe,Mn)3(Si,Cu)2 together with Mg2Si are dissolved. X-ray photoelectron spectroscopy is used for examination of a corrosion product precipitated on the surface.  相似文献   
2.
3.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   
4.
The coalloying with high contents of chromium (Cr), boron (B) and yttrium (Y) for porous B2-structured FeAl intermetallics fabricated through reactive synthesis was conducted. The oxidation behaviors of porous FeAl-based materials were investigated by evaluating the pore-structure evolution, oxidation kinetics and oxide-scale configuration. The results show that with the coalloying of high contents of Cr, B and Y, the oxidation mass gains of porous FeAl materials at 600?800 °C are significantly reduced. The combination of B enriched on the surface of oxide scales and Y located at the scale?metal interface promotes the formation of thin protective nodular α-Al2O3 oxide scales. It is indicated that introducing relatively high contents of reactive elements such as B and Y can benefit the selective growth of α-Al2O3 scales at relatively low temperatures without pre-treatment.  相似文献   
5.
固液反应球磨制备Cu-Sn金属间化合物   总被引:2,自引:0,他引:2  
研究通过Cu球对液态金属Sn在不同温度及时间内球磨制备Cu-Sn金属间化合物的过程,采用X射线和扫描电镜及透射电镜等分析手段分析产物特征.结果表明,在球料比为10:1,转速为80r/min的条件下,用Cu球对液态Sn进行不同时间及温度的液态球磨后,得到了不同的金属间化合物.在400℃时金属间化合物为Cu6Sn5,500℃及600℃时产物为Cu3Sn.加铜粉可以加快反应速度.采用固液反应球磨技术在高温下可以形成粒度很小,甚至达到纳米级的金属间化合物粉末.与机械合金化相比,固液反应球磨技术生成金属间化合物的速度较快,且成分单一.  相似文献   
6.
Catalytic hydrogenation of maleic anhydride (MA) into succinic anhydride (SA) is one of the most important transformations in synthetic organic chemistry. Herein, we firstly synthesized well-dispersed nickel particles confined by mixed metal oxides (Ni/MMO) derived from in situ transformation of Ni-Al hydrotalcite in a rotating packed bed (RPB) to catalyze this process. A series of Ni/MMO catalysts (63 wt%–89 wt% Ni) were effectively fabricated and the structure–activity relationship was established. Results showed that a Ni/MMO catalyst (82 wt% Ni) with substantial surface defect sites and the highest Ni surface area among the prepared Ni/MMO catalysts, demonstrates the highest activity with ~100% MA conversion and ~100% selectivity to SA under 25°C within 77 min. This is, to our knowledge, the highest conversion and selectivity under room temperature to date. Moreover, the Ni/MMO catalyst prepared by RPB has higher specific surface area and Ni surface area, therefore possessing a higher hydrogenation rate compared to that by stirred tank reactor (1.69 vs. 1.36, 10−3·molMA/gcat/min). These results will provide an attractive option of the catalysts for MA hydrogenation, and a novel strategy for synthesizing nickel catalyst derived from Ni-Al hydrotalcite.  相似文献   
7.
本文采用电镀镍、低温包埋渗铝在P92铁素体耐热钢表面制备不同稀土Ce含量的Ni-Al化合物复合涂层,并对复合涂层进行650 ℃×132 h的抗氧化实验。利用OM、SEM、EDS、XRD,分析涂层氧化前后的截面微观形貌,化学元素分布及物相变化规律。结果表明:涂层的氧化动力学曲线均符合抛物线规律。不含Ce的复合涂层平均氧化速率为0.4412×10-6 g/cm2/s,渗铝剂中加入2%CeCl3的涂层抗氧化性明显增强,平均氧化速率为0.2957×10-6 g/cm2/s,而加入过量CeCl3(4%、6%)则会在氧化过程中产生更多的孔洞,恶化了涂层的高温抗氧化性能,氧化速率相对加入2 % CeCl3的涂层有所升高。另外涂层中加入Ce元素增加了氧化膜的粘附性,对Al元素的向内扩散具有抑制作用。  相似文献   
8.
A series of Ni50−xCoxMn32Al18 (x = 3, 4, 5, 6, 7, and 8) alloys were prepared by the arc melting method. The martensitic transformation (MT) shifts to a lower temperature with increasing Co concentration and can be tuned to occur from a ferromagnetic austenite to a weak-magnetic martensite in the range of 6 ≤ x ≤ 8. The field-induced metamagnetic behavior was realized in Ni42Co8Mn32Al18 sample in which a large magnetic entropy change of 7.7 J/kg K and an effective refrigerant capacity value of 112 J/kg were obtained under the field of 60 kOe. The large magnetocaloric effect and adjustable MT temperature suggest that Ni–Co–Mn–Al alloys should have promising potential as magnetic refrigerants.  相似文献   
9.
Based on the density functional theory (DFT), the plane-wave pseudopotential method was used to calculate structural stabilities, electronic structures, and ferromagnetism of Fe3Si, Fe11NiSi4, Fe11CoSi4 and Fe11CrSi4 intermetallic compound. This study showed that the Fe11NiSi4 and Fe11CrSi4 phase are more stable than Fe3Si phase, especially Fe11NiSi4, but decreased with Fe11CoSi4 phase. Calculating the density of states and the Mulliken electronic populations showed that Fe11NiSi4 had the highest structural stability because of its Fermi level, which was close to the bottom of the pseudo-gap. Fe11NiSi4 also had the largest Mulliken population, which increased the metallic bonding of the alloying system. The total magnetic moments of Fe11NiSi4, Fe11CoSi4 and Fe11CrSi4 were 20.04μB, 19.98μB, and 18.81μB, respectively. These magnetic moments mainly originated from the 3d spin polarization of Fe and those of additional atoms.  相似文献   
10.
以由AAu8和ACu4干基因组成的AuCuI(AAu Cu8 A4)化合物的无序化实验路径为例,介绍了3个发现和1个方法。发现AuCuI(AAuCu8A4)化合物抗拒温度变化保持结构稳定性的能力归因于AAu8和ACu4基因的势阱深度远超过其振动能,这导致其无序化实验路径是亚平衡的;发现AuCuI(AAu Cu8 A4)适应温度变化改变结构的原子移动新机制是合金基因的"共振激活-同步交换"机制,这导致无序化是非均匀性和递次性的亚平衡转变;发现无序化过程中存在跳变有序度,导致存在跳变温度和升温速度增加跳变温度降低的"逆反效应",即所谓的"Retro效应"。采用实验混合焓路径法,建立了一整套亚平衡全息网络路径图。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号