首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4073篇
  免费   108篇
  国内免费   111篇
电工技术   43篇
综合类   55篇
化学工业   780篇
金属工艺   745篇
机械仪表   199篇
建筑科学   11篇
矿业工程   23篇
能源动力   238篇
轻工业   121篇
石油天然气   22篇
武器工业   20篇
无线电   316篇
一般工业技术   1126篇
冶金工业   157篇
原子能技术   268篇
自动化技术   168篇
  2024年   1篇
  2023年   57篇
  2022年   75篇
  2021年   94篇
  2020年   81篇
  2019年   65篇
  2018年   78篇
  2017年   88篇
  2016年   80篇
  2015年   59篇
  2014年   180篇
  2013年   225篇
  2012年   211篇
  2011年   356篇
  2010年   317篇
  2009年   257篇
  2008年   295篇
  2007年   269篇
  2006年   251篇
  2005年   155篇
  2004年   190篇
  2003年   145篇
  2002年   120篇
  2001年   97篇
  2000年   78篇
  1999年   54篇
  1998年   97篇
  1997年   70篇
  1996年   48篇
  1995年   45篇
  1994年   27篇
  1993年   20篇
  1992年   19篇
  1991年   22篇
  1990年   15篇
  1989年   14篇
  1988年   10篇
  1987年   11篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有4292条查询结果,搜索用时 15 毫秒
1.
The phospholipid composition of lipoproteins is determined by the specificity of hepatic phospholipid biosynthesis. Plasma phospholipid 20:4n-6 and 22:6n-3 concentrations are higher in women than in men. We used this sex difference in a lipidomics analysis of the impact of endocrine factors on the phospholipid class and molecular species composition of fasting plasma from young men and women. Diester species predominated in all lipid classes measured. 20/54 Phosphatidylcholine (PtdCho) species were alkyl ester, 15/48 phosphatidylethanolamine (PtdEtn) species were alkyl ester, and 12/48 PtdEtn species were alkenyl ester. There were no significant differences between sexes in the proportions of alkyl PtdCho species. The proportion of alkyl ester PtdEtn species was greater in women than men, while the proportion of alkenyl ester PtdEtn species was greater in men than women. None of the phosphatidylinositol (PtdIns) or phosphatidylserine (PtdSer) molecular species contained ether-linked fatty acids. The proportion of PtdCho16:0_22:6, and the proportions of PtdEtn O-16:0_20:4 and PtdEtn O-18:2_20:4 were greater in women than men. There were no sex differences in PtdIns and PtdSer molecular species compositions. These findings show that plasma phospholipids can be modified by sex. Such differences in lipoprotein phospholipid composition could contribute to sexual dimorphism in patterns of health and disease.  相似文献   
2.
The plasma spray technique was well proven in producing metal oxide based gas sensors in the last two decades using different powder feedstocks. However, limited research was made to fabricate hydrogen gas sensor from tin oxide layer coated over tungsten oxide layer. This paper attempts to interpret the hydrogen gas sensing performances of plasma sprayed coating derived by depositing tin oxide layer over tungsten oxide (SnO2/WO3) layer. Plasma sprayed SnO2/WO3 sensor showed maximum response of 90% at 150 °C in contrast to stand-alone WO3 (89% at 350 °C) and stand-alone SnO2 (89% at 250 °C). The lower operating temperature of SnO2/WO3 sensor without compromising gas response was attributed to the WO3–SnO2 hetero-junction. SnO2/WO3 sensor showed selective sensing towards hydrogen with respect to carbon monoxide and methane gases. This sensor also possessed repeatable characteristics after 39 days from the initial measurement. In a nut-shell, plasma spayed SnO2/WO3 sensor showed stability of base resistance, repeatability after successive response and recovery cycles, selective sensing towards 500 ppm H2 with significant magnitude of gas response of 90%, response time of 35 s and recovery time of 269 s at a temperature of 150 °C.  相似文献   
3.
We analysed with different methods the densification of UO2 nanopowders in SPS under constant heating rate (CHR) and isothermal sintering conditions. The apparent activation energy of densification in SPS (75 kJ/mol with CHR method) is significantly smaller than in conventional sintering. It is shown that this is likely not an effect of the applied current. We also observed a threshold stress at 64 MPa for the transition from pressure-insensitive sintering (stress exponent n≈0) to pressure-assisted sintering, suggesting that the contribution of the capillary stresses in such nanopowders is comparable with the typical stress applied in SPS.  相似文献   
4.
Utilization of 3D nanostructured Pt cathodes could obviously improve performances of proton exchange membrane fuel cells (PEMFCs) owing to the reduced tortuosity and the bi-continuous nanoporous structure. However, these cathodes usually suffer from the flooding problem ascribed to the ionomer-free and nanoscale pores which are more susceptible to water condensation. In this paper, ultra-thin nanoporous metal films (100 nm) were utilized to construct PEMFC cathodes and independent transport channels were designed separately for water and gas aiming at the flooding problem. Nanoporous gold (NPG) film was used as the model support for loading Pt nanoparticles owing to its controllable and stable structure. After optimizing the polytetrafluoroethylene (PTFE) content and carbon loading in the gas diffusion layer (GDL), plasma treatment under O2 atmosphere was used to pattern the GDL with independent water transport channels. The obtained liquid permeation coefficients and oxygen gains demonstrated the obviously improved water and O2 transport. By using a home-made optimized GDL and a nanoporous film cathode with pore size ~60 nm, the flooding problem could be facilely solved. With a Pt loading of ~16 μg cm?2, this 3D nanostructured cathode exhibits a PEMFC performance of ~957 mW cm?2 at 80 °C. The Pt power efficiency is about 4 times higher than that of the commercial Pt/C cathode (50 μg cm?2, 756 mW cm?2). Obviously, this study provides a simple but effective methodology to solve the water flooding problem in the ultra-thin nanoporous film cathodes which is applicable for other types of 3D nanostructured PEMFC cathodes.  相似文献   
5.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
6.
《Ceramics International》2021,47(21):30147-30155
Yttrium aluminum garnet (Y3Al5O12, YAG) is an important functional material. However, the strict and complicated preparation has limited its wide application. This study aimed to rapidly synthesize Y3Al5O12 by plasma electrolysis for the first time. The prepared powder was studied from topography, structure and elements by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The powder had a good crystal form with a spherical shape. The single kind of diffraction peak of Y3Al5O12 in XRD revealed the high purity of the synthesized powders. The study of the relationship between the applied voltage and the synthesized powder revealed a threshold voltage of 210 V under the present condition. The higher voltage led to the damage of the electrode due to excessive heat. The synthesis of the YAG powder had a melt-quench process. The two processes were carried out at the same time.  相似文献   
7.
《Ceramics International》2022,48(20):29959-29966
High-purity SiC ceramic devices are applied in semiconductor industry owing to their outstanding properties. Nevertheless, it is difficult to densify SiC ceramics without any sintering additive even by HP sintering. In this work, high-purity and dense SiC ceramics were fabricated by HP sintering with very low amounts of sintering aids. Residual B content was only 556 ppm and relative density was more than 99.5%. Furthermore, thermal conductivity of as-prepared SiC ceramics was improved from 155 W m?1 K?1 to 167 W m?1 K?1 by increasing holding time and their plasma corrosion resistance was promoted in the meantime. The as-prepared high-purity SiC ceramics have broad application prospects in the field of semiconductor industry.  相似文献   
8.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
9.
《Ceramics International》2022,48(20):30393-30406
Plasma methods are efficient processing for metal recovery from metal scrap, bearing minerals, electronic waste, etc. In this work, pure titanium nitride nanoparticles (TiN NPs) were synthesized from titanium scraps by the thermal plasma arc discharge (TPAD) method. TPAD synthesized TiN NPs have a highly crystalline nature with cubic and spherical morphologies with average particle sizes of 30–100 nm. Further, prepared TiN NPs involving surface modification (SM) or etching processes were investigated by using the non-thermal DC glow discharge plasma technique with air atmosphere at different processing times. SM@TiN NPs have a comparatively low crystalline, which was confirmed from the powder X-ray diffraction technique. SM@TiN NPs have very interesting core shell morphologies, which are due to the surface interactions of ionized air molecules. TiN and SM@TiN NPs have room-temperature ferromagnetic properties with high saturation magnetization (Ms) up to 2.6 and 3.0 emu/g and very high coercivity (Hc) of 235.5 Oe, respectively. TiN and SM@TiN NPs have superior energy storage performance with an outstanding specific capacitance of 192.8 and 435.1 F/g at a current density of 2 A/g with pseudocapacitive behavior. These results reveal that TiN and SM@TiN NPs have highly promising electrodes for supercapacitor applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号