首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19163篇
  免费   2109篇
  国内免费   1453篇
电工技术   1235篇
技术理论   1篇
综合类   1580篇
化学工业   4112篇
金属工艺   1059篇
机械仪表   660篇
建筑科学   1206篇
矿业工程   591篇
能源动力   903篇
轻工业   958篇
水利工程   542篇
石油天然气   1292篇
武器工业   300篇
无线电   1971篇
一般工业技术   3111篇
冶金工业   686篇
原子能技术   566篇
自动化技术   1952篇
  2024年   30篇
  2023年   466篇
  2022年   527篇
  2021年   677篇
  2020年   766篇
  2019年   645篇
  2018年   629篇
  2017年   741篇
  2016年   779篇
  2015年   749篇
  2014年   1049篇
  2013年   1314篇
  2012年   1287篇
  2011年   1494篇
  2010年   1107篇
  2009年   1062篇
  2008年   1081篇
  2007年   1244篇
  2006年   1091篇
  2005年   950篇
  2004年   805篇
  2003年   678篇
  2002年   522篇
  2001年   477篇
  2000年   346篇
  1999年   323篇
  1998年   261篇
  1997年   255篇
  1996年   237篇
  1995年   187篇
  1994年   168篇
  1993年   125篇
  1992年   107篇
  1991年   101篇
  1990年   92篇
  1989年   86篇
  1988年   60篇
  1987年   37篇
  1986年   35篇
  1985年   33篇
  1984年   28篇
  1983年   21篇
  1982年   13篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
1.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   
2.
The applications of antiferroelectric (AFE) materials in miniaturized and integrated electronic devices are limited by their low energy density. To address the above issue, the antiferroelectricity of the reinforced material was designed to improve its AFE-ferroelectric (FE) phase transition under electric fields. In this present study, the composition of Zr4+ (0.72 Å) and Ti4+ (0.605 Å) at B-site of Pb0.97La0.02(ZrxSn0.05Ti0.95-x)O3 ceramics with orthogonal reflections are synthesized via the tape-casting method. These ceramics are modified to enhance their antiferroelectricity by reducing their tolerance factor. A recoverable energy storage density Wrec 12.1 J/cm3 was obtained for x = 0.93 under 376 kV/cm, which is superior value than reported until now in lead-based energy storage systems. Moreover, the discharge energy density can reach 10.23 J/cm3, and 90 % of which can be released within 5.66 μs. This work provides a new window and potential materials for further industrialization of pulse power capacitors.  相似文献   
3.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
4.
生物质基喷气燃料是指全部或大部分来源于生物资源的喷气燃料,符合清洁低碳、安全高效的现代能源体系的要求。以生物质基喷气燃料替代传统石油基喷气燃料有助于我国早日实现“碳达峰、碳中和”的远大目标。在阐述生物质基喷气燃料生产工艺的发展历程及生物质基喷气燃料应用现状的基础上,提出高密度的生物质基喷气燃料是未来喷气燃料的发展方向,具有多环结构的生物质是合成高密度生物质基喷气燃料组分的优质原料;同时,总结了高密度生物质基喷气燃料组分生产工艺的研究进展,展望了生物质基喷气燃料未来的发展及挑战。  相似文献   
5.
Based on the experimental reports, Au-decoration on the ZnO nanostructures dramatically increases the electronic sensitivity to H2S gas. In the current study, we computationally scrutinized the mechanism of Au-decoration on a ZnO nanotube (ZON) and the influence on its sensing behavior toward H2S gas. The intrinsic ZON weakly interacted with the H2S gas with an adsorption energy of ?11.2 kcal/mol. The interaction showed no effect on the HOMO–LUMO gap and conductivity of ZON. The predicted response of intrinsic ZON toward H2S gas is 6.3, which increases to 78.1 by the Au-decoration at 298 K. The corresponding experimental values are about 5.0 and 80.0, indicating excellent agreement with our findings. We showed that the Au atom catalyzes the reaction 3O2?+?2H2S?→?2SO2?+?2H2O. Our calculated energy barrier (at 298 K) is about 12.3 kcal/mol for this reaction. The gap and electrical conductance Au-ZON largely changed by this reaction are attributed to the electron donation and back-donation processes. The obtained recovery time is about 1.35 ms for desorption of generated gases from the surface of the Au-ZON sensor.  相似文献   
6.
《Ceramics International》2021,47(24):34521-34528
Aiming at the problem that power density and energy density are difficult to obtain simultaneously under low field, a novel composition (1-x)Na0·5Bi0·5TiO3-xBaZn1/3Ta2/3O3((1-x)NBT-xBZT) was designed and fabricated via solid-state methods. With the addition of BZT, the crystal lattice, structural symmetry, grain size, and dense degree were all increased proved by XRD, Raman, and Archimedes drainage method et al. Because of the enhancement of relaxor behavior, the x=0.10 sample displayed a high permittivity εr of 2871±15% and a low dielectric loss tan δ ≤ 0.025 in the wide temperature range of 60–400 oC. This ceramic also showed maximum recoverable energy density Wd (2.07 J/cm3) with high efficiency η (71.5%) under a low field of 150 kV/cm. Moreover, pulse discharge testing proved that this ceramic possessed both a significant discharge energy density WD (0.96 J/cm3) and a record high power density PD (108.54 MW/cm3). This work provided a promising material for high power and energy applications.  相似文献   
7.
The present study aims to utilize the high surface area of the nanotube structure of halloysite (HNTs), an aluminosilicate clay, and conductivity of reduced graphene oxide (rGO) as support material for the deposition of nickel (Ni) and cobalt (Co) nanoparticles. With that aim, a novel bimetallic cathode electrocatalyst, Co–Ni @ HNTs-rGO (Catalyst H3), is developed. This catalyst is characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Transmission Electron Microscopy (TEM). Catalyst H3 demonstrates outstanding oxygen reduction reaction (ORR) activity, electrochemical stability, electrocatalytic performance, and lowest resistance in comparison to the other developed catalysts and conventional Pt/C. Catalyst H3 is used in single-chambered MFCs (microbial fuel cells), where the anode is filled with molasses-laden wastewater. The attained maximum power density in MFC (catalyst H3) is 455 ± 9 mW/m2, which is higher than other catalysts. All the results indicate towards its potential use in MFC application.  相似文献   
8.
A novel solid oxide fuel cell (SOFC) multigeneration system fueled by biogas derived from agricultural waste (maize silage) is designed and analyzed from the view point of energy and exergy analysis. The system is proposed in order to limit the greenhouse gas emissions as it uses a renewable energy source as a fuel. Electricity, domestic hot water, hydrogen and cooling load are produced simultaneously by the system. The system includes a solid oxide fuel cell; which is the primary mover, a biogas digester subsystem, a cascaded closed loop organic Rankine cycle, a single effect LiBr-water absorption refrigeration cycle, and a proton exchange membrane electrolyzer subsystem. The proposed cascaded closed-loop ORC cycle is considered as one of the advanced heat recovery technologies that significantly improve thermal efficiency of integrated systems. The thermal performance of the proposed system is observed to be higher in comparison to the simple ORC and the recuperated ORC cycles. The integration of a splitter to govern the flue gas separation ratio is also introduced in this study to cater for particular needs/demands. The separation ratio can be used to vary the cooling load or the additional power supplied by the ORC to the system. It is deduced that net electrical power, cooling load, heating capacity of the domestic hot water and total energy and exergy efficiency are 789.7 kW, 317.3 kW, 65.75 kW, 69.86% and 47.4% respectively under integral design conditions. Using a parametric approach, the effects of main parameters on the output of the device are analyzed. Current density is an important parameter for system performance. Increasing the current density leads to increased power produced by the system, decreased exergy efficiency in the system and increased energy efficiency. After-burner, air and fuel heat exchangers are observed to have the highest exergy destruction rates. Lower current density values are desirable for better exergy-based sustainability from the exergetic environmental impact assessment. Higher current density values have negative effect on the environment.  相似文献   
9.
A new, experimental method based on air flow rate rather than current is presented to optimize operating parameters for the stacks and systems of proton exchange membrane fuel cells (PEMFCs) for maximizing their net power. This approach is illustrated for a commercial 18 kW PEMFC module. The impact of contamination pressure drop across the cathode air filter is also investigated on the compressor behavior. It is further shown that a 4V reduction in the compressor voltage reduces its power consumption by 9.1%. Using the 3D graphs of the power-pressure-flow data, it is found that the stack pressure of 180 kPaa is superior to the higher tested pressures as it enhances the net power by 7.0 and 13.7% at different conditions. Application of the present study will lead to the development of PEMFCs with higher power output by optimizing stack pressure, stoichiometry and air flow to properly deliver the system design specifications.  相似文献   
10.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号