首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8115篇
  免费   1086篇
  国内免费   299篇
电工技术   563篇
综合类   534篇
化学工业   2157篇
金属工艺   664篇
机械仪表   209篇
建筑科学   258篇
矿业工程   622篇
能源动力   854篇
轻工业   416篇
水利工程   37篇
石油天然气   85篇
武器工业   55篇
无线电   385篇
一般工业技术   741篇
冶金工业   1630篇
原子能技术   135篇
自动化技术   155篇
  2024年   16篇
  2023年   201篇
  2022年   242篇
  2021年   299篇
  2020年   341篇
  2019年   276篇
  2018年   257篇
  2017年   306篇
  2016年   291篇
  2015年   249篇
  2014年   455篇
  2013年   537篇
  2012年   534篇
  2011年   559篇
  2010年   362篇
  2009年   392篇
  2008年   321篇
  2007年   490篇
  2006年   476篇
  2005年   391篇
  2004年   361篇
  2003年   343篇
  2002年   348篇
  2001年   291篇
  2000年   226篇
  1999年   159篇
  1998年   128篇
  1997年   111篇
  1996年   87篇
  1995年   73篇
  1994年   61篇
  1993年   42篇
  1992年   54篇
  1991年   42篇
  1990年   58篇
  1989年   38篇
  1988年   11篇
  1987年   11篇
  1986年   9篇
  1985年   10篇
  1984年   13篇
  1983年   6篇
  1982年   7篇
  1981年   8篇
  1980年   1篇
  1977年   1篇
  1975年   4篇
  1959年   1篇
  1951年   1篇
排序方式: 共有9500条查询结果,搜索用时 15 毫秒
1.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
2.
Oxygen blocking the porous transport layer (PTL) increases the mass transport loss, and then limits the high current density condition of proton exchange membrane electrolysis cells (PEMEC). In this paper, a two-dimensional transient mathematical model of anode two-phase flow in PEMEC is established by the fluid volume method (VOF) method. The transport mechanism of oxygen in porous layer is analyzed in details. The effects of liquid water flow velocity, porosity, fiber diameter and contact angle on oxygen pressure and saturation are studied. The results show that the oxygen bubble transport in the porous layer is mainly affected by capillary pressure and follows the transport mechanism of ‘pressurization breakthrough depressurization’. The oxygen bubble goes through three stages of growth, migration and separation in the channel, and then be carried out of the electrolysis cell by liquid water. When oxygen breaks through the porous layer and enters the flow channel, there is a phenomenon that the branch flow is merged into the main stream, and the last limiting throat affects the maximum pressure and oxygen saturation during stable condition. In addition, increasing the liquid water velocity is helpful to bubble separation; changing the porosity and fiber diameter directly affects the width of pore throat and the correlative capillary pressure; increasing porosity, reducing fiber diameter and contact angle can promote oxygen breakthrough and reduce the stable saturation of oxygen.  相似文献   
3.
An important difficulty associated with alkaline water electrolysis is the rise in anode overpotential attributable to bubble coverage of the electrode surface. For this study, a system with a high-speed video camera was developed, achieving in-situ observation of bubble generation on an electrode surface, monitoring an area of 1.02 mm2 at 6000 frames per second. The relation between polarization curve (current density up to 3.0 A cm?2) and oxygen bubble generation behavior on nickel electrodes having cylindrical wires and rectangular wires of different sizes (100–300 μm) was clarified. The generated bubbles slide upward, contacting the electrode surface and detaching at the top edge. Observations indicate that small electrodes have short bubble residence time and thin bubble covering layer on the electrode. As a result, the small electrode diameter contributes to smaller overpotential at high current density.  相似文献   
4.
5.
While the challenges associated with the stability of metal halide perovskites are well known and intensely studied, variability in electronic properties represents an equally significant, yet seldom studied, challenge that could potentially slow or inhibit the commercial viability of these systems. In this work, the contactless characterization technique time-resolved microwave conductivity (TRMC) is used to quantify the variability in electronic properties of the prototypical perovskite, methylammonium lead iodide (MAPbI3) both between different samples, and at different locations within the same sample. Using scanning electron microscopy (SEM) and a quasi-automated image-analysis strategy, it is possible to evaluate the metrics of heterogeneity in surface microstructure and correlate them with the electronic properties as obtained by TRMC. Substantial intra-sample and inter-sample variation is observed in the mobility-yield product in samples prepared following differing protocols, and in samples prepared following identical protocols.  相似文献   
6.
《云南化工》2022,(1):75-77
丙烯腈是重要的化工原料,在合成纤维、塑料等领域有着广阔的应用前景。但其生产过程污染严重,污水有毒有害,治理难度高。采用传统污水处理方式处理此类污水效果不佳。以三维催化电解法为主要思路,研究替代传统生化污水处理方式处理丙烯腈废水的可行性及相关技术参数,探索了处理此类石油化工污水的新途径。  相似文献   
7.
不同给液方式对铜电解过程中有重要的影响,不同的循环方式会影响槽内温度分布、电解液成分及阳极泥沉降等,因此,根据铜电解生产不同情况的需要,分析对比了多种给液方式在贵冶电解车间的应用,总结了这几种给液方式的优缺点和适用条件。  相似文献   
8.
Perovskite nanostructures have attracted much attention in recent years due to their suitability for a variety of applications such as photovoltaics, light-emitting diodes (LEDs), nanometer-size lasing, and more. These uses rely on the conductive properties of these nanostructures. However, electrical characterization of individual, thin perovskite nanowires has not yet been reported. Here, conductive atomic force microscopy characterization of individual cesium lead halide nanowires is presented. Clear differences are observed in the conductivity of nanowires containing only bromide and nanowires containing a mixture of bromide and iodide. The differences are attributed to a higher density of crystalline defects, deeper trap states, and higher inherent conductivity for nanowires with mixed bromide–iodide content.  相似文献   
9.
Activity-directed synthesis (ADS) is a structure-blind, functional-driven molecular discovery approach. In this Concept, four case studies highlight the general applicability of ADS and showcase its flexibility to support different medicinal chemistry strategies. ADS deliberately harnesses reactions with multiple possible outcomes, and allows many chemotypes to be evaluated in parallel. Resources are focused on bioactive molecules, which emerge in tandem with associated synthetic routes. Some of the future challenges for ADS are highlighted, including the realisation of an autonomous molecular discovery platform. The prospects for ADS to become a mainstream lead generation approach are discussed.  相似文献   
10.
The recent interest in microbial electrolysis cell (MEC) technology has led the research platform to develop full biological MECs (bioanode-biocathode, FB-MEC). This study focused on biohydrogen production from a biologically catalyzed MEC. A bioanode and a biocathode were initially enriched in a half biological MFC (bioanode-abiocathode, HB-MFC) and a half biological MEC (abioanode-biocathode, HB-MEC), respectively. The FB-MEC was established by transferring the biocathode of the HB-MEC and the bioanode of the HB-MFC to a two-chamber MEC. The FB-MEC was operated under batch (FB-MEC-B) and recirculation batch (FB-MEC-RB) modes of operation in the anodic chamber. The FB-MEC-B reached a maximum current density of 1.5 A/m2 and the FB-MEC-RB reached a maximum current density of 2.5 A/m2 at a similar applied voltage while the abiotic control system showed the maximum of 0.2 A/m2. Hydrogen production rate decreased in the FB-MEC compared to that of the HB-MEC. However, the cathodic hydrogen recovery increased from 42% obtained in the HB-MEC to 56% in the FB-MEC-B and 65% in the FB-MEC-RB, suggesting the efficient oxidation and reduction rates in the FB-MEC compared to the HB-MEC. The onset potential for hydrogen evolution reaction detected by linear sweep voltammetry analysis were −0.780 and −0.860 V vs Ag/AgCl for the FB-MEC-RB and the FB-MEC-B (−1.26 for the abiotic control MEC), respectively. Moreover, the results suggested that the FB-MEC worked more efficiently when the biocathode and the bioanode were enriched initially in half biological systems before transferring to the FB-MEC compared to that of the simultaneously enriched in one system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号