首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5415篇
  免费   1189篇
  国内免费   252篇
电工技术   1015篇
综合类   272篇
化学工业   1467篇
金属工艺   396篇
机械仪表   114篇
建筑科学   109篇
矿业工程   186篇
能源动力   403篇
轻工业   71篇
水利工程   12篇
石油天然气   73篇
武器工业   21篇
无线电   700篇
一般工业技术   1503篇
冶金工业   305篇
原子能技术   143篇
自动化技术   66篇
  2024年   21篇
  2023年   232篇
  2022年   184篇
  2021年   309篇
  2020年   398篇
  2019年   346篇
  2018年   285篇
  2017年   331篇
  2016年   393篇
  2015年   295篇
  2014年   373篇
  2013年   389篇
  2012年   373篇
  2011年   372篇
  2010年   247篇
  2009年   242篇
  2008年   183篇
  2007年   279篇
  2006年   268篇
  2005年   241篇
  2004年   208篇
  2003年   176篇
  2002年   149篇
  2001年   105篇
  2000年   100篇
  1999年   70篇
  1998年   41篇
  1997年   33篇
  1996年   31篇
  1995年   22篇
  1994年   24篇
  1993年   22篇
  1992年   22篇
  1991年   20篇
  1990年   9篇
  1989年   15篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   12篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1959年   1篇
  1951年   3篇
排序方式: 共有6856条查询结果,搜索用时 31 毫秒
1.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
2.
The positive effects of a lithiophilic substrate on the electrochemical performance of lithium metal anodes are confirmed in several reports, while the understanding of lithiophilic substrate-guided lithium metal nucleation and growth behavior is still insufficient. In this study, the effect of a lithiophilic surface on lithium metal nucleation and growth behaviors is investigated using a large-area Ti3C2Tx MXene substrate with a large number of oxygen and fluorine dual heteroatoms. The use of the MXene substrate results in a high lithium-ion concentration as well as the formation of uniform solid–electrolyte-interface (SEI) layers on the lithiophilic surface. The solid–solid interface (MXene-SEI layer) significantly affects the surface tension of the deposited lithium metal nuclei as well as the nucleation overpotential, resulting in the formation of uniformly dispersed lithium nanoparticles ( ≈ 10–20 nm in diameter) over the entire MXene surface. The primary lithium nanoparticles preferentially coalesce and agglomerate into larger secondary particles while retaining their primary particle shapes. Subsequently, they form close-packed structures, resulting in a dense metal layer composed of particle-by-particle microstructures. This distinctive lithium metal deposition behavior leads to highly reversible cycling performance with high Columbic efficiencies >  99.0% and long cycle lives of over 1000 cycles.  相似文献   
3.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
4.
Hydroborate-based solid electrolytes have recently been successfully employed in high voltage, room temperature all-solid-state sodium batteries. The transfer to analogous lithium systems has failed up to now due to the lower conductivity of the corresponding lithium compounds and their high cost. Here LiB11H14 nido-hydroborate as a cost-effective building block and its high-purity synthesis is introduced. The crystal structures of anhydrous LiB11H14 as well as of LiB11H14-based mixed-anion solid electrolytes are solved and high ionic conductivities of 1.1 × 10−4 S cm−1 for Li2(B11H14)(CB11H12) and 1.1 × 10−3 S cm−1 for Li3(B11H14)(CB9H10)2 are obtained, respectively. LiB11H14 exhibits an oxidative stability limit of 2.6 V versus Li+/Li and the proposed decomposition products are discussed based on density functional theory calculations. Strategies are discussed to improve the stability of these compounds by modifying the chemical structure of the nido-hydroborate cage. Galvanostatic cycling in symmetric cells with two lithium metal electrodes shows a small overpotential increase from 22.5 to 30 mV after 620 h (up to 0.5 mAh cm−2), demonstrating that the electrolyte is compatible with metallic anodes. Finally, the Li2(B11H14)(CB11H12)  electrolyte is employed in a proof-of-concept half cell with a TiS2 cathode with a capacity retention of 82% after 150 cycles at C/5.  相似文献   
5.
Enriching the micronutrients, selenium (Se) and lithium (Li), in grapes to improve their nutraceutical properties were implemented by foliar application of organic fertiliser rich in Se and Li onto five grape cultivars. The effects of this biofortification on vine vigour, fruit quality, overall micronutrients and phenolic compounds also were investigated. Agronomic biofortification was found greatly increased the Se and Li content in the whole grape by multiple times, meanwhile it did not significantly affect the vine vigour and fruit quality of grapes. However, the biofortification did impact the Ionome (including all the mineral nutrients and trace elements) and phenolic compounds in grapes and this varied among cultivars. This study demonstrated foliar spray of organic Se/Li fertiliser was a very effective strategy to biofortify these micronutrients in grape berries, particularly in the skin, and therefore might be a promising strategy to increase the consumption and awareness of these grapes.  相似文献   
6.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
7.
锂电池是LWD仪器正常工作的动力来源,是仪器的心脏。仪器出井后,需要在井口读取数据,当锂电池的电量接近耗尽时,会导致数据读取失败的问题。该问题处理不当,会造成长期占用井口,影响钻井时效,严重时还可能会因短路造成昂贵的LWD仪器损坏。锂电池的临界电压问题暴露了该仪器的设计缺陷,在此通过技术方法充分利用INSITE系统本身提供的功能,绕过其设计缺陷将问题解决。  相似文献   
8.
Li7La3Zr2O12-based garnet-type solid electrolytes are promising candidates for use in all-solid-state lithium batteries (ASSLBs). However, their potential in large-scale commercial applications is largely hindered by the time/energy-consuming and lithium-wasting synthetic method which typically needs a long-duration high temperature solid state reaction process. Herein we invent a fast preparation route that involves a short-period thermal reaction (1100 °C for 10 min) in laboratory muffle furnaces following by conventional hot pressing technique to get almost fully dense (Al, Ga, Ta, Nb)-doped garnet-type electrolytes with high phase purity (>99.9 %). The large and compact grains, low porosity and high phase purities of garnet ceramic electrolytes synthesized in this study ensure superior electrochemical performance. Particularly, Ga-doped cubic Li7La3Zr2O12 shows extremely low Ea values (0.17?0.18 eV) and record-high lithium ionic conductivities (>2 × 10?3 S cm-1 at 25 °C).  相似文献   
9.
李存璞  王建川  魏子栋 《化工学报》2020,71(10):4490-4501
电化学反应器中隔膜材料是将正极和负极在电子通路上隔开但在离子传输通路上保持畅通的特殊材料。作为电化学反应器三个关键材料之一,隔膜材料还需耐强酸/强碱和高电压等环境。围绕电化学反应器中隔膜材料,从分子设计的角度针对材料电化学性能与化学稳定性的调控、电化学装置的介观传质性能的促进和改善等研究思路与进展进行了综述,为相关研究提供性能导向的分子设计参考。  相似文献   
10.
采用二次水热法将纳米二硫化钴负载于石墨烯上,并通过结构表征和电化学性能测试,探讨了纳米二硫化钴/石墨烯材料作为锂离子电池负极的性能。电容量测试结果表明:在电流密度为100 mA/g条件下,二硫化钴/石墨烯复合材料的首周充放电容量分别为1 610 mA·h/g和774 mA·h/g,测算出的库伦效率为48.1%;循环性能测试结果表明:经过50次循环测算后的复合材料的放电比容量为302 mA·h/g,容量保持率为33.4%;倍率性能测试结果表明:当电流密度回复到100 mA/g时,复合材料的比容量恢复至550 mA·h/g。实验制备的纳米二硫化钴/石墨烯复合材料在锂电池负极的应用上表现出了优异的循环性能和倍率性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号