首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49787篇
  免费   5405篇
  国内免费   3524篇
电工技术   2620篇
技术理论   1篇
综合类   4910篇
化学工业   6989篇
金属工艺   4326篇
机械仪表   2516篇
建筑科学   4441篇
矿业工程   2200篇
能源动力   1913篇
轻工业   3826篇
水利工程   1549篇
石油天然气   2682篇
武器工业   649篇
无线电   4886篇
一般工业技术   6671篇
冶金工业   3350篇
原子能技术   1068篇
自动化技术   4119篇
  2024年   90篇
  2023年   664篇
  2022年   1270篇
  2021年   1588篇
  2020年   1758篇
  2019年   1543篇
  2018年   1493篇
  2017年   1966篇
  2016年   2119篇
  2015年   2117篇
  2014年   3081篇
  2013年   3414篇
  2012年   3831篇
  2011年   3934篇
  2010年   2905篇
  2009年   2914篇
  2008年   2670篇
  2007年   3223篇
  2006年   2753篇
  2005年   2392篇
  2004年   2051篇
  2003年   1759篇
  2002年   1462篇
  2001年   1290篇
  2000年   1065篇
  1999年   878篇
  1998年   756篇
  1997年   639篇
  1996年   577篇
  1995年   525篇
  1994年   385篇
  1993年   314篇
  1992年   284篇
  1991年   215篇
  1990年   186篇
  1989年   149篇
  1988年   91篇
  1987年   64篇
  1986年   54篇
  1985年   51篇
  1984年   40篇
  1983年   26篇
  1982年   24篇
  1981年   22篇
  1980年   25篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1975年   9篇
  1959年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
2.
In this work, a practical numerical model with few parameters was proposed for the prediction of environmental hydrogen embrittlement. The proposed method adopts hydrogen enhanced plasticity-based mechanism in a fracture strain model to describe hydrogen embrittlement. Fracture toughness degradation of three commercial steels SA372J70, AISI4130 and X80 in high pressure hydrogen environment were investigated. Firstly, governing equations for hydrogen distribution and material damage evolution was established. Hydrogen enhanced localized flow softening effect was coupled within fracture strain dependency on stress triaxiality. Then, the numerical implementation and identification process of model parameters was described. Model parameters of the investigated steels were determined based on experiment results from literatures. Finally, with the calibrated model, fracture toughness reduction of the steels was predicted in a wide range of hydrogen pressure. The prediction results were compared with experimental results. Reasonable accuracy was reached. The proposed method is an attempt to reach balance between physical accurate prediction and engineering practicality. It is promising to provide a simplified numerical tool for the design and fit for service evaluation of hydrogen storage vessels.  相似文献   
3.
为了提高智能化光纤复合架空线路态势感知的实时性,将人工神经网络方法应用于光纤沿线应变解调,确定了神经网络的结构。编程实现了基于洛伦兹模型的最小二乘谱拟合方法和神经网络方法,采用不同信噪比和布里渊频移的布里渊谱训练神经网络,将它们应用于某光纤复合架空线路沿线光纤应变的测量,从不同角度比较了两种方法的计算结果。计算结果表明,神经网络方法能有效获得光纤沿线的布里渊频移进而获得应变,具有与谱拟合方法相似的准确性,但应变解调时间仅约为谱拟合方法的1/20000。研究结果为提高智能光纤复合架空线路态势感知的实时性提供了参考。  相似文献   
4.
Hydrogen transportation by pipelines gradually becomes a critical engineering route in the worldwide adaptation of hydrogen as a form of clean energy. However, due to the hydrogen embrittlement effect, the compatibility of linepipe steels and associated welds with hydrogen is a major concern when designing hydrogen-carrying pipelines. When hydrogen enters the steels, their ductility, fracture resistance, and fatigue properties can be adversely altered. This paper reviews the status of several demonstration projects for natural gas-hydrogen blending and pure hydrogen transportation, the pipeline materials used and their operating parameters. This paper also compares the current standards of materials specifications for hydrogen pipeline systems from different parts of the world. The hydrogen compatibility and tolerance of varying grades of linepipe steels and the relevant testing methods for assessing the compatibility are then discussed, and the conservatism or the inadequacies of the test conditions of the current standards are pointed out for future improvement.  相似文献   
5.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
6.
《Ceramics International》2022,48(10):14349-14359
The influence of heat-treatment temperatures (700 °C, 900°C, 1200 °C) on the phase, physical properties, crystallization rate, and in vitro properties of the solution combustion synthesized silicon-doped calcium phosphates (CaPs) were investigated. The thermodynamic aspects (enthalpy, entropy, and free energy) of the synthesis process and the crystallographic properties of the final samples were first predicted and then confirmed using density functional theory (DFT). Results demonstrated that the crystallization rate was controlled by the fuel(s) type (glycine, citric acid, and urea) and the amounts of Si4+ ions (0, 0.1, 0.4 mol). The highest calculated crystallization rate values of the un-doped, 0.1, and 0.4 mol Si-doped samples were 64%, 22%, 38%, respectively. The obtained results from the DFT simulation revealed that crystal growth in the direction of c-axis of hydroxyapatite (HAp) structure could change the stability of (001) surface of (HAp). Also, the computational data confirmed the adsorption of Si–OH groups on the (001) surface of HAp during the SCS process with an adsorption energy of 1.53 eV. AFM results in line with DFT simulation showed that the observed change in the surface roughness of Si-doped CaPs from 2 to 8 nm could be related to the doping of Si4+ ions onto the surface of CaPs. Besides, the theoretical and experimental investigation showed that crystal growth and doping of Si4+ ions could decrease the activation energy of oxygen reduction reaction (ORR). Furthermore, the results showed that the crystallized HAp structure could have great potential to efficiently reduce oxidative stress in human body.  相似文献   
7.
为探究泵站进水流速大小与泵站进水池水流流态、漩涡的产生与发展变化规律,结合泵站实际运行情况,建立引渠、前池、进水池和进水管的泵站物理模型和湍流数学模型,采用VOF模型和非定常的SST k-ω湍流模型对9种不同流速的泵站进水水流特性进行数值模拟,分析不同进水流速的泵站进水池水流流场分布、漩涡涡量的变化及分布规律。研究结果表明:当进水流速为0.322 2~0.564 2 m/s时,泵站表面漩涡的强度随进水流速的增大而增强:当进水流速为0.322 2~0.401 6 m/s时,进水池出现Ⅲ、Ⅳ型漩涡;当进水流速为0.483 5 m/s时,进水池出现Ⅴ型漩涡;当进水流速为0.520 8~0.564 2 m/s时,进水池出现Ⅵ型漩涡。将数值计算结果与模型试验结果进行对比,两者基本吻合。研究结果可为泵站工程设计提供参考。  相似文献   
8.
摘 要:为了提高码索引调制(code index modulation,CIM)系统的传输效率,提出了一种具有更低复杂度的单输入单输出(single input single output,SISO)的广义正交码索引调制(generalized orthogonal code index modulation,GQCIM)系统。CIM 系统使用扩频码和星座符号传输信息,但只能激活两个扩频码索引和一个调制符号。而 GQCIM 系统以一种新颖的方式克服了只激活一个调制符号的限制,同时充分利用了调制符号的正交性,增加扩频码索引以传输更多的额外信息位,提高了系统的传输效率。此外,分析了GQCIM系统的理论性能,推导了误码率性能的上界。通过蒙特卡罗仿真验证了GQCIM系统的性能,对比发现GQCIM系统的理论和仿真性能一致。而且在相同的传输效率下,结果显示GQCIM系统的性能优于同样具有正交性的调制系统,如广义码索引调制(generalized code index modulation,GCIM)系统、CIM系统、码索引调制-正交空间调制(code index modulation aided quadrature spatial modulation,CIM-QSM)系统、码索引调制-正交空间调制(code index modulation aided spatial modulation,CIM-SM)系统、脉冲索引调制(pulse index modulation,PIM)系统。  相似文献   
9.
In this study, a sulfidogenic reactor fed with microalgal biomass of Chlorella pyrenoidosa as an electron donor was operated in a continuous mode. This study evaluated the influence of various initial sulfate concentration from 1.0 to 2.5 g/L on anaerobic sulfate reduction kinetics by a sulfidogenic enrichment culture predominantly Desulfovibrio sp. VSV2. It was observed that volumetric sulfate reduction rate (VSRR) was consistently increasing with an increase in volumetric sulfate loading rate (VSLR) across the retention time of 7–10 days. For a retention time of 7 days, the maximum VSRR was noted as 0.0050 g/(L.h) with a corresponding VSLR of 0.0089 g/(L.h). When retention time was maintained for 10 days, a maximum sulfate reduction of 65% and a maximum bacterial concentration of 1.632 g/L were achieved for an initial sulfate concentration of 1.5 g/L. It was concluded that VSLR facilitated through both dilution rate and initial sulfate concentration had a significant influence over sulfate reduction kinetics. The results of the study suggested that the microalgal-fed sulfidogenic system could be effectively employed for reduction of sulfate from sulfate-rich wastewater.  相似文献   
10.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号