首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1973篇
  免费   538篇
  国内免费   336篇
电工技术   188篇
综合类   238篇
化学工业   18篇
金属工艺   40篇
机械仪表   161篇
建筑科学   11篇
矿业工程   42篇
能源动力   15篇
轻工业   14篇
水利工程   15篇
石油天然气   60篇
武器工业   33篇
无线电   598篇
一般工业技术   154篇
冶金工业   5篇
原子能技术   8篇
自动化技术   1247篇
  2024年   6篇
  2023年   52篇
  2022年   97篇
  2021年   102篇
  2020年   124篇
  2019年   94篇
  2018年   84篇
  2017年   117篇
  2016年   142篇
  2015年   127篇
  2014年   189篇
  2013年   187篇
  2012年   216篇
  2011年   220篇
  2010年   198篇
  2009年   189篇
  2008年   179篇
  2007年   174篇
  2006年   124篇
  2005年   86篇
  2004年   59篇
  2003年   35篇
  2002年   15篇
  2001年   9篇
  2000年   9篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1980年   1篇
排序方式: 共有2847条查询结果,搜索用时 15 毫秒
1.
Multi-channel and single-channel image denoising are on two important development fronts. Integrating multi-channel and single-channel image denoisers for further improvement is a valuable research direction. A natural assumption is that using more useful information is helpful to the output results. In this paper, a novel multi-channel and single-channel fusion paradigm (MSF) is proposed. The proposed MSF works by fusing the estimates of a multi-channel image denoiser and a single-channel image denoiser. The performance of recent multi-channel image denoising methods involved in the proposed MSF can be further improved at low additional time-consuming cost. Specifically, the validity principle of the proposed MSF is that the fused single-channel image denoiser can produce auxiliary estimate for the involved multi-channel image denoiser in a designed underdetermined transform domain. Based on the underdetermined transformation, we create a corresponding orthogonal transformation for fusion and better restore the multi-channel images. The quantitative and visual comparison results demonstrate that the proposed MSF can be effectively applied to several state-of-the-art multi-channel image denoising methods.  相似文献   
2.
陈会峰  张伟  马星河 《中州煤炭》2020,(11):130-133,141
干扰噪声直接影响局部放电法有效检测矿用高压电缆故障。基于局部放电法,综合采用理论计算、仿真实验、现场试验的方法,对比分析了短时傅里叶变换和傅里叶分析去噪法的原理和优缺点,提出了一种矿用高压电缆的局部放电去噪算法——小波阈值去噪法,同时,选择了合理的阈值函数和去噪流程。基于此,采用白噪声和连续周期信号作为高压电缆的干扰噪声,进行了模拟仿真实验。结果表明,小波阈值去噪法可有效抑制白噪声,其中,Db2小波性能和去噪效果最好;同时,现场试验结果显示,去噪后信噪比得到了显著增加,验证了小波阈值去噪法的合理性和可靠性。  相似文献   
3.
为了降低机床等待过程中的能耗,提出了一种实时数据驱动的机床等待时间预测与节能控制方法。首先,建立了射频识别驱动的生产进度评估方法,并以生产进度数据作为输入,构建了基于堆栈降噪自编码的机床等待时间预测模型;其次,依据预测的机床等待时间,提出了机床状态切换方法,以降低机床能耗;最后,通过一个电梯零部件制造车间的案例分析,表明该方法的预测误差仅为4.1%,同时将机床等待过程能耗降低了57%,实现了制造车间的节能减排。  相似文献   
4.
In this paper, we propose content adaptive denoising in highly corrupted videos based on human visual perception. We introduce the human visual perception in video denoising to achieve good performance. In general, smooth regions corrupted by noise are much more annoying to human observers than complex regions. Moreover, human eyes are more interested in complex regions with image details and more sensitive to luminance than chrominance. Based on the human visual perception, we perform perceptual video denoising to effectively preserve image details and remove annoying noise. To successfully remove noise and recover the image details, we extend nonlocal mean filtering to the spatiotemporal domain. With the guidance of content adaptive segmentation and motion detection, we conduct content adaptive filtering in the YUV color space to consider context in images and obtain perceptually pleasant results. Extensive experiments on various video sequences demonstrate that the proposed method reconstructs natural-looking results even in highly corrupted images and achieves good performance in terms of both visual quality and quantitative measures.  相似文献   
5.
An electrocardiogram (ECG) signal is a record of the electrical activities of heart muscle and is used clinically to diagnose heart diseases. An ECG signal should be presented as clear as possible to support accurate decisions made by doctors. This article proposes different combinations of combined adaptive algorithms to derive different noise-cancelling structures to remove (denoise) different kinds of noise from ECG signals. The algorithms are applied to the following types of noise: power line interference, baseline wander, electrode motion artifact, and muscle artifacts. Moreover, the results of the suggested models and algorithms are compared with those of conventional denoising tools such as the discrete wavelet transform, an adaptive filter, and a multilayer neural network (NN) to ensure the superiority of the proposed combined structures and algorithms. Furthermore, the hybrid concept is based on dual, triple, and quadruple combinations of well-known algorithms that derive adaptive filters, such as the least mean squares, normalized least mean squares and recursive least squares algorithms. The combinations are formulated based on partial update, variable step-size (VSS), and second iterative VSS algorithms, which are considered in different combinations. In addition, biased NN and unbiased linear neural network (ULNN) structures are considered. The performance of the different structures and related algorithms are evaluated by measuring the post-signal-to-noise ratio, mean square error, and percentage root mean square difference.  相似文献   
6.
In this article, an adaptive denoising method is suggested to accurate investigate the optical and structural features of polymeric fibers from noisy phase shifting microinterferograms. The mixed class of noise that may produce in the phase-shifting interferometric techniques is established. To our knowledge, this is an early study considered the mixing noises that may occur in microinterferograms. The suggested method utilized the convolution neural networks to detect the noise class and then denoising, it according to its class. Four convolution neural networks (Googlenet, VGG-19, Alexnet, and Alexnet–SVM) are refined to perform the automatic classification process for the noise class in the established data set. The network with the highest validation and testing accuracy of these networks is considered to apply the suggested method on realistic noisy microinterferograms for polymeric fibers, polypropylene and antimicrobial polyethylene terephthalate)/titanium dioxide, recoded using interference microscope. Also, the suggested method is applied on noisy microinterferograms include crazing and nanocomposite material. The demodulated phase maps and the three-dimensional birefringence profiles are calculated for tested fibers according to the suggested method. The obtained results are compared with the published data for these fibers and found to be in good agreements.  相似文献   
7.
针对滚动轴承故障诊断模型在噪声干扰下鲁棒性能差的问题,提出一种基于小波阈值去噪(WTD)、AR谱和思维进化算法(MEA)优化反向传播神经网络(BPNN)的轴承故障诊断方法。以原始振动信号为输入,采用小波方法分解重构原始信号滤除高频噪声,然后采用Burg算法估计AR模型参数提取降噪信号功率谱特征,最后将特征向量与对应标签分别作为MEA-BPNN神经网络的输入、输出进行训练,最终实现诊断。将该方法与一些先进的人工神经网络诊断方法作比较,测试该诊断模型的性能。研究结果表明:WTD-AR谱-MEA-BPNN诊断模型能够有效降低轴承振动信号的噪声干扰,实现特征增强,分辨率更高;相较于传统神经网络训练速度更快,在更短时间内甄别故障类型且识别率高。  相似文献   
8.
目的 许多彩色图像去噪算法未充分利用图像局部和非局部的相似性信息,并且忽略了真实噪声在彩色图像不同区域内分布的差异,对不同图像块和不同颜色通道都进行同等处理,导致去噪图像中同时出现过平滑和欠平滑现象。针对这些问题,本文提出一种自适应非局部3维全变分去噪算法。方法 利用一个非局部3维全变分正则项获取彩色图像块内和块间的相似性信息,同时在优化模型的保真项内嵌入一个自适应权重矩阵,该权重矩阵可以根据每次迭代得到的中间去噪结果的剩余噪声来调整算法在每个图像块、每个颜色分量以及每次迭代中的去噪强度。结果 通过不同的高斯噪声添加方式得到两个彩色噪声图像数据集。将本文算法与其他6个基于全变分的算法进行比较,采用峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity, SSIM)作为客观评价指标。相比于对比算法,本文算法在两个噪声图像数据集上的平均PSNR和SSIM分别提高了0.161.76 dB和0.12%6.13%,并获得了更好的图像视觉效果。结论 本文去噪算法不仅更好地兼顾了去噪与保边功能,而且提升了稳定性和鲁棒性,显示了在实际图像去噪中的应用潜力。  相似文献   
9.
激光测云仪后向散射信号是典型的非线性、非稳态信号,容易受噪声污染。针对该问题采用集成经验模态分解(EEMD)去噪算法进行处理,首先对含噪信号进行经验模态分解(EMD),将分解后的IMF分量进行自相关性分析,找出含噪占有量较大的IMF分量,对其进行SG(savitzky-golay)滤波,最后将滤波后的IMF分量和剩余分量进行信号的重构。经仿真实验结果表明,与传统的EMD方法相比,EEMD方法处理含噪信号后的输出信噪比提高了1.695 dB,均方误差平均降低了30%以上,说明该方法可以适用于非线性、非稳态的后向散射回波信号去噪处理,能为激光测云仪下一级的云底高度反演提供高信噪比的初始数据。  相似文献   
10.
针对基于TOF深度相机的空间目标表面重建的点云源数据容易受到仪器本身、扫描环境、外界干扰等影响,而含有大量的无效点和噪声点,增加了计算负担且影响了重建质量等问题,提出了一种基于随机采样一致性背景分割的点云K 近邻去噪方法,以消除目标数据的异常值和无效点。首先,改进RANSAC算法,通过设置不同的阙值对原始点云进行背景分割,以确保准确提取待重建目标的主要特征。然后,通过K 近邻点云平均算法和双边滤波算法移除离群点,最后使用体素化网格方法实现点云大数据的下采样,简化了目标点云,保留了局部特征,加快了曲面重建速度。实验结果表明,该算法能够有效的剔除噪声点,准确率高,实时性好,满足应用的要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号