首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  自动化技术   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
各向异性权重的模糊C均值聚类图像分割   总被引:5,自引:0,他引:5  
传统的模糊C均值聚类算法(FCM)在图像分割中未考虑各个点的灰度特征及其邻域像素的关联程度,导致其对于噪声十分敏感.而各种改进算法虽然较好地克服了图像噪声的影响,但由于使用均值滤波等方法导致分割图像边缘模糊.为此,提出一种基于各向异性权重的FCM图像分割方法,通过引入新的邻域窗口权重的计算方法,使得中心点邻域内各点具有各向异性的权重;并使用基于灰度级的快速算法,提出了各向异性权重的模糊C均值聚类算法.实验结果表明,文中方法具有较强的抗噪性,对于噪声具有良好的稳定性,分割精度较高.  相似文献
2.
提出一种基于无监督模糊C均值聚类的彩色自然图像分割算法。使用置信区间交集准则自适应得到Gabor滤波器中各个像素点对应的尺度,并以该自适应尺度为依据,计算相应的自适应方向、频率以及相位;使用该自适应Gabor滤波方法分别对各通道进行纹理分析得到相应的纹理图像。提出一种快速的基于多项式分割的方法对各个纹理图像进行分析,确定聚类数目,并使用无监督模糊C均值聚类算法得到最终的分割结果。实验结果表明,该算法能够很好地克服图像纹理对于分割结果的影响,有效区分目标与背景,分割结果具有较高的分割精度,是一种有效的自然彩色图像分割方法。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号