首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   2篇
  自动化技术   4篇
  2020年   1篇
  2008年   1篇
  2007年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
基于免疫粒子群优化的最小属性约简算法   总被引:8,自引:0,他引:8       下载免费PDF全文
把求决策表最小属性约简问题归结为一个0 1组合优化问题,为该问题定义了合理的粒子适应度函数,提出了一种把免疫接种、免疫测试机制与二进制粒子群算法相结合的混合算法用于求解该问题。对UCI数据表的实验结果表明该算法在获得更优解的同时,仍具有较快的运算速度。多种算法的比较结果表明了该算法的有效性和可行性。  相似文献
2.
最小约简问题的一个免疫离散粒子群算法   总被引:4,自引:0,他引:4  
把求决策表最小属性约简问题归结为一个不含非线性约束的0-1组合优化问题,证明了两个问题之间最优解的等价性.针对问题的特性,对原有的二进制粒子群算法进行改进,引入基于决策表差别矩阵的疫苗接种机制以及k-精英保优策略,由此提出一个免疫二进制粒子群算法并用于求解转化后的组合优化问题.仿真计算结果表明该算法有效地提高了获得最小属性约简的可能性,同时还具有较快的收敛速度.与其它类型的最小属性约简算法相比较,该算法取得明显的改进效果.  相似文献
3.
基于二进制粒子群优化的一个最小属性约简算法   总被引:3,自引:0,他引:3  
研究基于二进制粒子群优化算法思想求解决策表最小属性约简问题的方法.定义适当的适应值函数,将决策表最小属性约简问题转化为一个适合二进制粒子群优化算法求解的0-1组合优化问题,证明问题解的等价性.在此基础上,引入种子粒子概念及其自适应保护策略,提出一个改进的二进制粒子群算法,取得良好的效果.实验结果说明该算法的有效性.  相似文献
4.
在复杂的自然场景中,目标识别存在背景干扰、周围物体遮挡和光照变化等问题,同时识别的目标大多拥有多种不同的尺寸和类型.针对上述目标识别存在的问题,本文提出了一种基于改进YOLOv3的非限制自然场景中中等或较大尺寸的目标识别方法(简称CDSP-YOLO).该方法采用CLAHE图像增强预处理方法来消除自然场景中光照变化对目标识别效果的影响,并使用随机空间采样池化(S3Pool)作为特征提取网络的下采样方法来保留特征图的空间信息解决复杂环境中的背景干扰问题,而且对多尺度识别进行改进来解决YOLOv3对于中等或较大尺寸目标识别效果不佳的问题.实验结果表明:本文提出的方法在移动通信铁塔测试集上的准确率达97%,召回率达80%.与YOLOv3相比,该方法在非限制自然场景中的目标识别应用上具有更好的性能和推广应用前景.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号