首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
MPI (Message Passing Interface)专为节点密集型大规模计算集群设计,然而,随着MPI+CUDA (Compute Unified Device Architecture)应用程序以及计算节点拥有GPU的计算机集群的出现,类似于MPI的传统通信库已无法满足.而在机器学习领域,也面临着同样的挑战,如Caff以及CNTK (Microsoft CognitiveToolkit)的深度学习框架,由于训练过程中,GPU会缓存庞大的数据量,而大部分机器学习训练的优化算法具有迭代性特点,导致GPU间的通信数据量大,通信频率高,这些已成为限制深度学习训练性能提升的主要因素之一,虽然推出了像NCCL (Nvidia Collective multi-GPU Communication Library)这种解决深度学习通信问题的集合通信库,但也存在不兼容MPI等问题.因此,设计一种更加高效、符合当前新趋势的通信加速机制便显得尤为重要,为解决上述新形势下的挑战,本文提出了两种新型通信广播机制:(1)一种基于MPI_Bcast的管道链PC (Pipelined Chain)通信机制:为GPU缓存提供高效的节点内外通信.(2)一种适用于多GPU集群系统的基于拓扑感知的管道链TA-PC (Topology-Aware Pipelined Chain)通信机制:充分利用多GPU节点间的可用PCIe链路.为了验证提出的新型广播设计,分别在三种配置多样化的GPU集群上进行了实验:GPU密集型集群RX1、节点密集型集群RX2、均衡型集群RX3.实验中,将新的设计与MPI+NCCL1 MPI_Bcast进行对比实验,对于节点内通信和节点间的通信,分别取得了14倍和16.6倍左右的性能提升;与NCCL2的对比试验中,小中型消息取得10倍左右的性能提升,大型消息取得与其相当的性能水平,同时TA-PC设计相比于PC设计,在64GPU集群上实现50%左右的性能提升.实验结果充分说明,提出的解决方案在可移植性以及性能方面有较大的优势.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号