首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  自动化技术   2篇
  2019年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
刘偲  秦亮曦 《计算机科学》2016,43(Z11):67-72
针对决策中普遍存在的代价问题,在模糊理论和决策粗糙集的基础上,对其代价敏感属性约简方法进行了研究。在模糊决策粗糙集属性约简中引入了包含误分类代价和测试代价的总代价。因此约简的目标不再只是考虑正域的大小,而是寻找使得总代价最小的最优属性子集。提出了一种模糊决策粗糙集代价敏感属性约简(COSAR)算法,该算法采用启发式方法搜索最优属性子集。给出了算法的步骤,并将该算法与已有的模糊粗决策粗糙集属性快速约简(QuickReduct)算法进行了性能对比。实验结果表明,COSAR算法比QuickReduct算法具有更强的属性约简能力、更低的分类总代价、更短的运行时间,且随着测试样本的增加,分类总代价差值也越来越大。  相似文献
2.
自动上妆旨在通过计算机算法实现人脸妆容的编辑与合成,隶属于人脸图像分析领域.其在互动娱乐应用、图像视频编辑、辅助人脸识别等多方面起着重要作用.然而作为人脸编辑任务,其仍难以在保证图像的编辑结果自然、真实的同时又很好地满足编辑需求,并且仍有难以精确控制编辑区域、图像编辑前后一致性差、图像质量不够精细等问题.针对以上难点,创新性地提出了一种掩模控制的自动上妆生成对抗网络,该网络利用掩模方法,能够重点编辑上妆区域,约束人脸妆容编辑中无需编辑的区域不变,保持主体信息.同时其又能单独编辑人脸的眼影、嘴唇、脸颊等局部区域,实现特定区域上妆,丰富了上妆功能.此外,该网络能够进行多数据集联合训练,除妆容数据集外,还可以使用其他人脸数据集作为辅助,增强模型的泛化能力,得到更加自然的上妆结果.最后,依据多种评价标准,进行了充分的定性及定量实验,并与目前的主流算法进行了对比,综合评价了所提方法的性能.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号