首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   4篇
  自动化技术   11篇
  2020年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  1998年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
一种新的SVM对等增量学习算法   总被引:10,自引:0,他引:10       下载免费PDF全文
在分析支持向量机(SVM)寻优问题的KKT条件和样本分布之间关系的基础上,分析了新增样本的加入对SV集的影响,定义了广义KKT条件。基于原训练样本集和新增训练样本集在增量训练中地位等同,提出了一种新的SVM增量学习算法。算法在及时淘汰对后继分类影响不大的样本的同时保留了含有重要分类信息的样本。对标准数据集的实验结果表明,算法获得了较好的性能。  相似文献
2.
一种基于PSO的RBF-SVM模型优化新方法   总被引:3,自引:0,他引:3  
针对使用径向基核函数的支持向量机,采用粒子群优化方法实现模型优化.基于训练集中样本之间的最近平均距离和最远平均距离,给出参数σ的取值空间,从而减小了超参数搜索的范围,并采用对数刻度进一步提高粒子群优化方法的参数搜索效率.与遗传算法和网格法的对比实验表明,所提出的方法收敛速度更快,得出的超参数更优.  相似文献
3.
一种LDA与SVM混合的多类分类方法   总被引:2,自引:0,他引:2  
针对决策有向无环图支持向量机(DDAGSVM)需训练大量支持向量机(SVM)和误差积累的问题,提出一种线性判别分析(LDA)与SVM 混合的多类分类算法.首先根据高维样本在低维空间中投影的特点,给出一种优化LDA 分类阈值;然后以优化LDA 对每个二类问题的分类误差作为类间线性可分度,对线性可分度较低的问题采用非线性SVM 加以解决,并以分类误差作为对应二类问题的可分度;最后将可分度作为混合DDAG 分类器的决策依据.实验表明,与DDAGSVM 相比,所提出算法在确保泛化精度的条件下具有更高的训练和分类速度.  相似文献
4.
基于类边界壳向量的快速SVM增量学习算法   总被引:1,自引:0,他引:1       下载免费PDF全文
为进一步提高SVM增量训练的速度,在有效保留含有重要分类信息的历史样本的基础上,对当前增量训练样本集进行了约简,提出了一种基于类边界壳向量的快速SVM增量学习算法,定义了类边界壳向量。算法中增量训练样本集由壳向量集和新增样本集构成,在每一次增量训练过程中,首先从几何角度出发求出当前训练样本集的壳向量,然后利用中心距离比值法选择出类边界壳向量后进行增量SVM训练。分别使用人工数据集和UCI标准数据库中的数据进行了实验,结果表明了方法的有效性。  相似文献
5.
一种基于凸壳算法的SVM集成方法   总被引:1,自引:1,他引:0       下载免费PDF全文
为提高支持向量机(SVM)集成的训练速度,提出一种基于凸壳算法的SVM集成方法,得到训练集各类数据的壳向量,将其作为基分类器的训练集,并采用Bagging策略集成各个SVM。在训练过程中,通过抛弃性能较差的基分类器,进一步提高集成分类精度。将该方法用于3组数据,实验结果表明,SVM集成的训练和分类速度平均分别提高了266%和25%。  相似文献
6.
8月20日,恒升集团将一纸传真发到国家信息产业部科技司和国家科学技术部,就其下辖媒体《微电脑世界》对恒升网上纠纷一事的报道提出异议。而《微电脑世界》认为报道是客观公正的。  相似文献
7.
为实现对历史训练数据有选择地遗忘,并尽可能少地丢失训练样本集中的有用信息,分析了KKT条件与样本分布间的关系并得出了结论,给出了增量训练中当前训练样本集的构成.为了提高SVM增量训练速度,进一步利用训练样本集的几何结构信息对当前训练样本集进行约减,用约减后的当前训练样本集进行SVM增量训练,从而提出一种利用KKT务件与类边界包向量的快速SVM增量学习算法.实验结果表明,该算法在保持较高分类精度的同时提高了SVM增量学习速度.  相似文献
8.
通过充分利用多个基分类器间的差异,集成分类器能够有效提高泛化精度,但是分类复杂度也随之增加.针对一类典型基于重采样和投票法的集成分类器,根据少数服从多数原则,在不影响分类精度的前提下给出了硬截止投票方法;针对基于Bagging的SVM集成的特点,引入概率分析,分析根据集成中部分投票预测集成结果的损失概率,给出了基于损失概率的软截止投票方法,该方法可推广到其他基于重采样技术与投票法的集成分类系统.对一个人工数据集和两个UCI数据集的实验表明该方法在保证分类精度的前提下,大幅提高了分类速度.  相似文献
9.
支持向量机由于其自身的特点使其在许多应用中表现出了特有的优势,是目前研究的热点.由于标准的SVM学习算法并不直接支持增量式学习,所以研究有效的SVM增量学习方法具有重要理论意义和实用价值.对SVM增量学习中动态目标学习的有关问题进行了深入讨论,定义了静态目标学习与动态目标学习.针对动态目标学习提出了概念迁移问题,给出了SVM增量学习概念迁移的教学表达.讨论和分析了现有的SVM增量学习方法、以及目前处理SVM增量学习中概念迁移问题的方法并得出了结论.  相似文献
10.
在现代防空作战中,如何快速准确的对敌我(友)目标进行识别,至关重要.本文提出先利用粗糙集理论对目标特征属性进行优化筛检,再利用神经网络对目标进行分类识别,该方法不但提高了识别的准确率而且兼顾到识别的效率.试验结果表明,该方法符合现代防空作战中目标识别的要求,具有一定的实用价值.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号