首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   1篇
  自动化技术   3篇
  2011年   2篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
基于Adaboost算法的回声状态网络预报器   总被引:1,自引:0,他引:1       下载免费PDF全文
把单个回声状态网络(echo state network,ESN)的预测模型作改进,对整体ESN预测精度的提高是有限的.针对以上问题,本文考虑整体ESN.首先利用Adaboost算法提升单个ESN的泛化性能及预测精度,并且根据Adaboost算法的结果,建立一种ESN预报器(Adaboost ESN,ABESN).这个ESN预报器根据拟合误差不断修正训练样本的权重,拟合误差越大,训练样本权重值就越大;因此,它在下一次迭代时,就会侧重在难以学习的样本.把单个ESN的预测模型经过加权,然后按照加法组合在一起,形成最终的ESN预测模型.将该预测模型应用于太阳黑子、Mackey-Glass时间序列的预测研究,仿真结果表明所提出的预测模型在实际时间序列预测领域的有效性.  相似文献
2.
韩敏  穆大芸 《控制与决策》2011,26(10):1469-1472,1478
回声状态网络(ESN)学习算法中可能存在解的奇异问题,在时间序列预测时易导致病态解问题,且伴随着具有较大幅值的输出权值,尤其是当训练样本个数小于输出权值维数时,ESN的解必为奇异的.鉴于此,考虑使用LM(Levenberg Marquardt)算法代替常用的线性回归方法,自适应选择LM参数,从而有效地控制输出权值的幅值,提高ESN的预测性能.通过Lorenz混沌时间序列进行预测研究,对大连月平均气温实际数据进行仿真研究,取得了较好的预测效果.  相似文献
3.
在利用单储备池模型对多变量预测研究时,多个变量只能通过单个储备池进行特征映射,无法分别刻画各个变量的动力学特性.针对以上问题,提出一种多储备池回声状态网络.混沌系统中各个变量分别通过各个储备池扩展成高维的特征向量,采用Bayesian线性回归的方法,对多核回声状态网络输出权值进行训练,形成一种新的预报器,即多核贝叶斯状态回声机(MrBESN).实际数据的仿真结果验证了所提方法的有效性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号