首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   6篇
  完全免费   1篇
  自动化技术   7篇
  2014年   1篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
免疫克隆算法求解动态多目标优化问题   总被引:1,自引:1,他引:2  
尚荣华  焦李成  公茂果  马文萍 《软件学报》2007,18(11):2700-2711
求解动态多目标优化(dynamic multi-objective optimization,简称DMO)问题的主要困难在于目标函数、约束条件或者相关的问题参数是随时间不断变化的.基于免疫克隆选择学说,提出一种用于解决DMO问题的新算法--动态多目标免疫克隆优化(immune clonal algorithm for DMO,简称ICADMO).该算法改进了现有的克隆策略,采用整体克隆的方式;在选择策略上,根据Pareto-占优的概念,将抗体群中的个体分为支配个体和非支配个体,对非支配个体进行选择.采用3个特色算子,使其很好地保持了所得解的多样性、均匀性和收敛性.通过数值实验,与DBM(direction-based method)算法进行比较,结果表明,新算法在收敛性、多样性以及解分布的广度方面都体现了很好的性能.  相似文献
2.
免疫克隆多目标优化算法求解约束优化问题   总被引:1,自引:1,他引:3  
尚荣华  焦李成  马文萍 《软件学报》2008,19(11):2943-2956
针对现有的约束处理技术的一些不足之处,提出一种用于求解约束优化问题的算法——免疫克隆多目标优化算法(immune clonal multi-objective optimization algorithm,简称ICMOA).算法的主要特点是通过将约束条件转化为一个目标,从而将问题转化为两个目标的多目标优化问题.引入多目标优化中的Pareto-支配的概念,每一个个体根据其被支配的程度进行克隆、变异及选择等操作.克隆操作实现了全局择优,有利于得到高质量的解;变异操作提高算法的局部搜索能力,有利于所得解的多样性;选择操作有利于算法向着最优搜索,而且加快了收敛速度.基于抗体群的随机状态转移过程,证明该算法具有全局收敛性.通过对13个标准测试问题的测试,并与已有算法进行比较。结果表明,该算法在收敛速度和求解精度上均具有一定的优势.  相似文献
3.
进化多目标优化算法研究   总被引:1,自引:1,他引:47  
进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研究热点之一.在简要总结2003年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出当前多目标优化的研究趋势,一方面,粒子群优化、人工免疫系统、分布估计算法等越来越多的进化范例被引入多目标优化领域,一些新颖的受自然系统启发的多目标优化算法相继提出;另一方面,为了更有效的求解高维多目标优化问题,一些区别于传统Pareto占优的新型占优机制相继涌现;同时,对多目标优化问题本身性质的研究也在逐步深入.对公认的代表性算法进行了实验对比.最后,对进化多目标优化的进一步发展提出了自己的看法.  相似文献
4.
基于免疫学中的抗体克隆选择学说,通过引入抗独特型结构,提出了一种用于求解复杂多峰函数优化问题人工免疫系统算法——抗独特型克隆选择算法.该算法通过克隆增殖操作、抗独特型变异操作、抗独特型重组操作和克隆选择操作这4 个操作算子来实现抗体种群的进化,能够同时在同一抗体周围的多个方向进行全局搜索和局部搜索,具有较强的搜索能力.理论分析表明,抗独特型克隆选择算法具有全局收敛性.抗独特型结构的引入充分利用了优势抗体的结构信息,加快了抗体种群的收敛速度,从而以更快的速度获得全局最优解,同时降低了算法陷入局部极值点的几率.实验部分采用4 组不同类型的函数对算法性能进行测试.理论分析及实验结果表明,与克隆选择算法等已有算法相比,该算法性能好,求解精度高,鲁棒性强.  相似文献
5.
公茂果  王爽  马萌  曹宇  焦李成  马文萍 《软件学报》2011,22(11):2760-2772
提出了一种用于复杂分布数据的二阶段聚类算法(two-phase clustering,简称TPC),TPC包含两个阶段:首先将数据划分为若干个球形分布的子类,每一个子类用其聚类中心代表该类内的所有样本;然后利用可以处理复杂分布数据的流形进化聚类(manifold evolutionary clustering,简称MEC)对第1阶段得到的聚类中心进行类别划分;最后综合两次聚类结果整理得到最终聚类结果.该算法基于改进的K-均值算法和MEC算法.在进化聚类算法的基础上引入流形距离,使得算法能够胜任复杂分布的数据聚类问题.同时,算法降低了引入流形距离所带来的计算量.在分布各异的7个人工数据集和7个UCI数据集测试了二阶段聚类算法,并将其效果与遗传聚类算法、K均值算法和流形进化聚类算法做了比较.实验结果表明,无论对于简单或复杂、凸或非凸的数据,TPC都表现出良好的聚类性能,并且计算时间与MEC相比明显减少.  相似文献
6.
马文萍  黄媛媛  李豪  李晓婷  焦李成 《软件学报》2014,25(11):2675-2689
提出了基于粗糙集模糊聚类与差分免疫克隆聚类的图像分割算法。该算法在差分免疫克隆聚类算法的基础上,通过引入粗糙集模糊聚类,将差分免疫克隆聚类算法中的硬聚类变成模糊聚类,从而获得更丰富的聚类信息。具体来说,由于粗糙集的优势是处理不确定的数据,因此,加入粗糙集模糊聚类后更有利于算法解决不确定性问题。通过对9幅图像分割实验结果与4种算法的对比,验证了该算法在聚类性能稳定性方面的优越性,结果还同时证明了该算法具有更高的分割正确率和更好的分割结果。  相似文献
7.
将一种新的流形距离作为相似性度量测度, 提出了一种用于无监督分类与识别的人工免疫系统方法. 通过基于流形距离的相似性度量, 有效利用样本集固有的全局一致性信息, 充分挖掘无类属样本的空间分布信息, 对样本进行类别划分. 新方法将免疫响应过程建模为一个四元组 AIR=(G,I,R,A) , 其中 G 为引发免疫响应的外界刺激, 即抗原; I 为所有可能抗体的集合; R 为抗体间相互作用的规则集合; A 为支配抗体反应、指导抗体进化的动态算法. 针对无监督分类问题, 将抗体编码为代表各类别的典型样本序号的排列, 利用动态算法 A 搜索能代表各类别的典型样本的最佳组合. 将新方法与标准的 K-均值算法、基于流形距离的进化聚类算法以及 Maulik 等人提出的基于遗传算法的聚类算法进行了性能比较. 对 6 个人工数据集及手写体数字识别问题的仿真实验结果显示, 新方法对样本空间分布复杂的无监督分类问题和实际的模式识别问题具有较高的准确率和较好的鲁棒性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号