首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   2篇
自动化技术   6篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
抑郁症日益成为影响现代人生活幸福程度的重要因素。实时有效地识别用户情绪的方法对于抑郁症潜在患者的发现和治疗十分有意义。用户情绪的状态及变化会体现在其生活日志数据上。该文从使用可穿戴设备收集的用户生活日志数据出发,对数据进行了特征方面的分析;进一步地,使用以回归树为弱学习器的集成学习模型,设计了使用全部数据、仅用户自身数据以及仅他人数据进行训练的三组实验构成的对比实验框架,以比较使用不同用户数据对识别结果的影响。实验结果表明,基于生活日志数据的集成学习模型可以有效地识别用户的情绪状态。同时,基于实验结果提出了用户认知不一致的猜想,对于心理学上的抑郁分析也有一定的启发作用。该工作是目前所知第一个利用用户生活日志信息进行情绪识别以及抑郁症患者分析的工作,为后续进一步扩大实验规模和改良实验设计提供了思路。  相似文献   
2.
近年来,人工智能技术飞速发展,不少工作试图从人类的认知发展过程中探索前进方向,语言学习认知的过程成为了重点关注的研究领域。已有的语言认知研究工作主要集中在学龄前儿童母语的词汇学习认知方面,依赖于WordBank等大规模语料库。然而就我们所知,目前在第二语言学习方面研究不多,尚未有大规模的第二语言词汇学习数据,且传统的数据收集方法难以收集到大规模数据,这也一定程度上限制了对于第二语言学习的研究工作及母语与第二语言学习的比较。针对这一问题,该文面向学龄前儿童群体设计了基于游戏性原则的数据收集方法和研究框架,用于收集第二语言的语言学习情况和用户数据,以支撑相应研究工作的开展。目前,已经实现了针对学龄前儿童的第二语言为英语的词汇认知数据收集系统,正在进行在线的数据收集。  相似文献   
3.
结合领域内知识的个性化推荐算法在近年来受到了广泛关注,许多研究工作尝试将商品之间的关系(如互补关系等)融入到推荐算法中.对于商家而言,了解商品互补的关系能够帮助他们更好地制定定价策略;对于推荐算法而言,结合商品关系的推荐也更有可能生成令人满意的结果,因此,如何挖掘商品间的互补关系是一个很有意义的研究问题.现有方法大多从用户历史中的“共同购买”发掘商品的互补关系,但是由于真实的购买场景非常复杂,得到的很可能仅仅是共现关系而不是互补关系.借鉴经济学的相关研究,提出了商品潜在互补性发现推荐模型(latent complementarity discovery model,简称LCDM),试图从另一角度更准确地刻画商品间关系.首先,基于经济学理论中的需求交叉弹性(cross-price elasticity of demand),提出互补性发现模型(complementarity discovery model,简称CDM)联合商品价格与购买历史来挖掘商品间的互补关系.在用户标注任务中,所提算法较已有方法在用户标注的一致性上提升了10.6%.随后,基于此提出了融合商品互补关系的双重注意力机制推荐模型LCDM.最后,在真实数据集上的对比实验结果表明,提出的LCDM推荐模型能够显著改善推荐的效果,在Recall@5和NDCG@5上分别有54.5%和125.8%的提升,验证了所提方法的有效性.  相似文献   
4.
近年来,各种各样的推荐算法层出不穷,特别是深度学习的发展,极大地推动了推荐系统的研究.然而,各个推荐算法在实现细节、评价方式、数据集处理等方面存在众多差异,越来越多的研究者开始对推荐领域的可复现性产生担忧.为了帮助缓解上述问题,基于PyTorch实现了一个综合、高效、易扩展的轻量级推荐算法框架ReChorus,意为构建一个推荐算法的“合唱团”.ReChorus框架中实现了多种不同类型的推荐算法,类别涵盖常规推荐、序列推荐、引入知识图谱的推荐、引入时间动态性的推荐等;同时,对于一些常见的数据集也提供统一的预处理范式.相比其他推荐系统库,ReChorus在保证综合高效的基础上尽可能做到了轻量实用,同时具有较高的可扩展性,尤其以方便学术研究为导向,非常容易上手实现新的模型.不同的推荐算法在ReChorus框架中能够在相同的实验设定下进行训练和评测,从而实现推荐算法间的有效对比.该项目目前已在GitHub发布:https://github.com/THUwangcy/ReChorus.  相似文献   
5.
结合强化学习(特别是深度强化学习)的推荐算法,在近年来相比已有方法取得了较大的提升。然而,现有绝大多数基于深度强化学习的推荐方法仅使用循环神经网络(RNN)等方法学习用户的短期兴趣,忽略了用户的长期兴趣,导致对用户的兴趣建模存在不足。因此,该文提出一种结合用户长期兴趣与短期兴趣的深度强化学习推荐方法(LSRL)。首先,LSRL方法使用协同过滤方法来学习用户的长期兴趣;其次,LSRL方法利用门控循环单元(GRU)对用户最近的正反馈与负反馈交互记录进行建模学习,得到用户的短期兴趣表示;最后,LSRL方法重新设计了深度强化学习的Q-网络框架,结合两方面的用户兴趣表示并将其应用于深度Q-网络(Deep Q-Network)中,预测用户对物品的反馈。在MovieLens数据集上的实验结果表明,该文提出的推荐方法比其他基线方法在归一化折损累计增益(NDCG)与命中率(Hit Ratio)上有显著提升。  相似文献   
6.
近些年来,随着互联网的迅速发展,用户在各种在线平台上接收到海量的信息,信息爆炸成为一个关键性问题。在此背景下,推荐系统逐步渗透到人们工作生活的各个场景,已成为不可或缺的一环。它不仅可以帮助用户快速获得想要的信息和服务,还可以提高资源利用效率,从而给企业带来更多效益。因此,个性化推荐算法不仅获得了工业界广泛的关注,也是科研领域的研究热点之一。在个性化推荐的研究中,受限于平台与效率等因素,研究者大多无法将算法部署到在线系统上进行评价,因此离线评价成为推荐领域研究的主要方式。然而个性化推荐涉及到的场景复杂,可获得的数据信息多种多样,用户行为多为隐式反馈且存在许多噪声,这使得推荐系统离线评价的实验设定复杂多变,存在大量易被忽视却十分重要的细节。比如在训练采样负例时,既可以仅从用户没有交互过的商品中采样,也可以将验证测试集的商品视作未知交互加入采样池。同样,从训练到测试在很多其他环节也涉及这样的实现细节(如数据集处理、已知负样本的使用、Top-N排序候选集范围等)。这些实验细节通常不会在学术论文中被显式提及,却潜在影响了模型效果的对比,还决定着实验的科学性,甚至会导致相反或错误的分析结论。本文从数据集处理、模型训练、验证与测试、效果评价等多个角度,系统地讨论与反思了推荐系统实验中的细节设定。对于每个环节,我们枚举了若干常见设定,并在真实数据集上验证了其中某些设定的实际影响。实验结果表明一些细节确实会导致关于模型优劣的不同结论。最终我们形成了关于推荐系统实验细节的指导性总结,包括可选、建议、必须的三类设定,希望帮助推荐算法研究者规避实现细节上的陷阱,更科学合理地设计实验。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号