首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2077篇
  免费   80篇
  国内免费   2篇
电工技术   22篇
综合类   6篇
化学工业   739篇
金属工艺   41篇
机械仪表   41篇
建筑科学   135篇
矿业工程   6篇
能源动力   65篇
轻工业   180篇
水利工程   14篇
石油天然气   2篇
武器工业   4篇
无线电   123篇
一般工业技术   305篇
冶金工业   139篇
原子能技术   36篇
自动化技术   301篇
  2023年   17篇
  2021年   44篇
  2020年   28篇
  2019年   28篇
  2018年   35篇
  2017年   26篇
  2016年   65篇
  2015年   58篇
  2014年   57篇
  2013年   105篇
  2012年   89篇
  2011年   122篇
  2010年   85篇
  2009年   92篇
  2008年   84篇
  2007年   73篇
  2006年   78篇
  2005年   69篇
  2004年   49篇
  2003年   44篇
  2002年   43篇
  2001年   33篇
  2000年   27篇
  1999年   42篇
  1998年   45篇
  1997年   51篇
  1996年   44篇
  1995年   40篇
  1994年   34篇
  1993年   21篇
  1992年   38篇
  1991年   36篇
  1990年   31篇
  1989年   37篇
  1988年   25篇
  1987年   30篇
  1986年   27篇
  1985年   20篇
  1984年   26篇
  1983年   25篇
  1981年   25篇
  1980年   21篇
  1979年   17篇
  1978年   18篇
  1977年   20篇
  1976年   13篇
  1975年   17篇
  1974年   18篇
  1973年   15篇
  1971年   15篇
排序方式: 共有2159条查询结果,搜索用时 296 毫秒
1.
2.
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.  相似文献   
3.
Indoles are privileged structures in medicinal and bioorganic chemistry that are particularly well suited to serve as platforms for diversity. Among many other therapeutic areas, the indole scaffold has been used to design aromatic compounds useful to interfere with enzymes engaged in the regulation of substrate acylation status, such as sirtuins. However, the planarity of the indole ring is not necessarily optimal for all target enzymes, especially when functionalization with aromatic side chains is required. Replacement of flat scaffolds by nonplanar molecular cores dominated by sp3 hybridization is a common strategy to avoid the disadvantages associated with poor solubility and high promiscuity, while covering less-well-explored areas of chemical space. Thus, we synthesized fragment-like tetrahydroindoles suitable for fragment-based drug discovery as well as a well-characterized small library intended as multipurpose screening compounds. For proof of principle, these compounds were screened against sirtuins 1–3, enzymes known to be addressable by indoles. We found that 2,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamides are potent and selective SIRT2 inhibitors. Compound 16 t displayed an IC50 value of 0.98 μm and could serve as exquisite starting point for hit-to-lead profiling.  相似文献   
4.
MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments.  相似文献   
5.
Carbene‐metal‐amides (CMAs) are a promising family of donor–bridge–acceptor molecular charge‐transfer (CT) emitters for organic light‐emitting diodes. A universal approach is demonstrated to tune the energy of their CT emission. A blueshift of up to 210 meV is achievable in solid state via dilution in a polar host matrix. The origin of this shift has two components: constraint of thermally‐activated triplet diffusion, and electrostatic interactions between guest and polar host. This allows the emission of mid‐green CMA archetypes to be tuned to sky blue without chemical modifications. Monte‐Carlo simulations based on a Marcus‐type transfer integral successfully reproduce the concentration‐ and temperature‐dependent triplet diffusion process, revealing a substantial shift in the ensemble density of states in polar hosts. In gold‐bridged CMAs, this shift does not lead to a significant change in luminescence lifetime, thermal activation energy, reorganization energy, or intersystem crossing rate. These discoveries offer new insight into coupling between the singlet and triplet manifolds in CMA materials, revealing a dominant interaction between states of CT character. The same approach is employed using materials which have been chemically modified to alter the energy of their CT state directly, shifting the emission of sky‐blue chromophores into the practical blue range.  相似文献   
6.
Lysine-specific demethylase 1 (LSD1) has evolved as a promising therapeutic target for cancer treatment, especially in acute myeloid leukaemia (AML). To approach the challenge of site-specific LSD1 inhibition, we developed an enzyme-prodrug system with the bacterial nitroreductase NfsB (NTR) that was expressed in the virally transfected AML cell line THP1-NTR+. The cellular activity of the NTR was proven with a new luminescent NTR probe. We synthesised a diverse set of nitroaromatic prodrugs that by design do not affect LSD1 and are reduced by the NTR to release an active LSD1 inhibitor. The emerging side products were differentially analysed using negative controls, thereby revealing cytotoxic effects. The 2-nitroimidazolyl prodrug of a potent LSD1 inhibitor emerged as one of the best prodrug candidates with a pronounced selectivity window between wild-type and transfected THP1 cells. Our prodrugs are selectively activated and release the LSD1 inhibitor locally, proving their suitability for future targeting approaches.  相似文献   
7.
A low‐carbon electricity supply for Australia was simulated, and the installed capacity of the electrical grid was optimized by shifting the electricity demand of residential electric water heaters (EWHs). The load‐shifting potential of Australia was estimated for each hour of the simulation period using a nationwide aggregate EWH load model on a 90 × 110 raster grid. The electricity demand of water heaters was shifted from periods of low renewable resource and high demand to periods of high renewable resource and low demand, enabling us to effectively reduce the installed capacity requirements of a 100%‐renewable electricity grid. It was found that by shifting the EWH load by just 1 hour, the electricity demand of Australia could be met using purely renewable electricity at an installed capacity of 145 GW with a capacity factor of 30%, an electricity spillage of 20%, and a generation cost of 15.2 ¢/kWh. A breakdown of the primary energy sources used in our scenario is as follows: 43% wind, 29% concentrated solar thermal power, and 20% utility photovoltaic. Sensitivity analysis suggested that further reduction in installed capacity is possible by increasing the load‐shifting duration as well as the volume and insulation level of the EWH tank.  相似文献   
8.
The thermoelectric properties of melt-processed nanocomposites consisting of a polycarbonate (PC) thermoplastic matrix filled with commercially available carboxyl (–COOH) functionalized multi-walled carbon nanotubes (MWCNTs) were evaluated. MWCNTs carrying carboxylic acid moieties (MWCNT-COOH) were used due the p-doping that the carboxyl groups facilitate, via electron withdrawing from the electron-rich π-conjugated system. Preliminary thermogravimetric analysis (TGA) of MWCNT-COOH revealed that the melt-mixing was limited at low temperatures due to thermal decomposition of the MWCNT functional groups. Therefore, PC was mixed with 2.5 wt% MWCNT-COOH (PC/MWCNT-COOH) at 240 °C and 270 °C. In order to reduce the polymer melt viscosity, a cyclic butylene terephthalate (CBT) oligomer was utilized as an additive, improving additionally the electrical conductivity of the nanocomposites. The melt rheological characterization of neat PC and PC/CBT blends demonstrated a significant decrease of the complex viscosity by the addition of CBT (10 wt%). Optical and transmission electron microscopy (OM, TEM) depicted an improved MWCNT dispersion in the PC/CBT polymer blend. The electrical conductivity was remarkably higher for the PC/MWCNT-COOH/CBT composites compared to the PC/MWCNT-COOH ones. Namely, the PC/MWCNT-COOH/CBT processed at 270 °C exhibited the best values with electrical conductivity; σ = 0.05 S/m, Seebeck coefficient; S = 13.55 μV/K, power factor; PF = 7.60 × 10−6μW/m K−2, and thermoelectric figure of merit; ZT = 7.94 × 10−9. The PC/MWCNT-COOH/CBT nanocomposites could be ideal candidates for large-scale thermal energy harvesting, even though the presently obtained ZT values are still too low for commercial applications.  相似文献   
9.
In this article, a combined experimental and theoretical approach has been proposed to establish a relationship between the required shear force and the degree of delamination of clay tactoids during the melt-processing of polymer nanocomposites. Polypropylene (PP) was selected as a model polymer, and nanocomposites of PP with organically modified clay were prepared by a master batch dilution technique in a twin-screw extruder. The effect of PP throughput during the dilution of the master batch on the dispersion and orientation of clay platelets were studied in detail. Powder X-ray diffraction, small and wide angle X-ray scattering and high resolution transmission electron microscopy were used to study the structure and morphology of the obtained nanocomposites. The results showed that a lower feeding rate led to the orientation of clay platelets almost in the direction of extrusion. The adhesive force and the interaction energy between the clay platelets were theoretically calculated using the Hamaker approach. The analysis showed that the peeling mechanism is a practical explanation for the delamination of clay platelets during melt extrusion and that the dimensions of the clay platelet tactoids play an important role in the peeling due to the shear stress.  相似文献   
10.
Load bearing behaviour of layered ceiling elements made of regular and porous lightweight concrete Lightweight and efficiently bearing steel reinforced elements may be achieved through the application of regular and porous concrete in a three‐layer cross‐section. While exterior layers of higher strength carry bending moments, a lightweight core layer material holds up to shear stresses. In order to quantify the potential of this construction method, the bearing behaviour of 18 layered ceiling elements with six different geometries was investigated. The goals were both to identify different failure modes, as well as evaluate the suitability of commonly used calculation procedures. The following paper shows that an optimal usage of cross‐sections of ceiling elements can already achieved by using concrete with strengths between 5 MN/m2 and 20 MN/m2. The efficiently bearing elements are characterized by the fact, that both the concrete, the reinforcing steel and the layer's interface are highly stressed both under pressure and tension. The tested specimens showed both a tensile bending and interface failure with a partly very high utilization of the flexural compressive zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号