首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2011年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
为了提高挖掘结果的准确性,提出基于样例学习和项集同步随机化的隐私保护频繁模式挖掘方法(learning and synchronized privacy preserving frequent pattern mining,简称LS-PPFM).该方法充分利用不需要隐私保护的个体数据,首先对不需要保护的数据学习,得到样例数据中蕴涵的强关联项,然后在对数据随机化时,将强关联项绑定在一起作同步随机化变换,以保持项与项之间的潜在关联性.实验结果表明,相对于项独立随机化,LS-PPFM能够在略微牺牲一定的隐私保护性的情况下,显著提高频繁模式挖掘结果的准确性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号