首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  完全免费   12篇
  自动化技术   216篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   12篇
  2013年   9篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   10篇
  2008年   13篇
  2007年   13篇
  2006年   11篇
  2005年   14篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   10篇
  1995年   17篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1974年   1篇
排序方式: 共有216条查询结果,搜索用时 31 毫秒
1.
2.
Supervised tensor learning   总被引:10,自引:1,他引:9  
Tensor representation is helpful to reduce the small sample size problem in discriminative subspace selection. As pointed by this paper, this is mainly because the structure information of objects in computer vision research is a reasonable constraint to reduce the number of unknown parameters used to represent a learning model. Therefore, we apply this information to the vector-based learning and generalize the vector-based learning to the tensor-based learning as the supervised tensor learning (STL) framework, which accepts tensors as input. To obtain the solution of STL, the alternating projection optimization procedure is developed. The STL framework is a combination of the convex optimization and the operations in multilinear algebra. The tensor representation helps reduce the overfitting problem in vector-based learning. Based on STL and its alternating projection optimization procedure, we generalize support vector machines, minimax probability machine, Fisher discriminant analysis, and distance metric learning, to support tensor machines, tensor minimax probability machine, tensor Fisher discriminant analysis, and the multiple distance metrics learning, respectively. We also study the iterative procedure for feature extraction within STL. To examine the effectiveness of STL, we implement the tensor minimax probability machine for image classification. By comparing with minimax probability machine, the tensor version reduces the overfitting problem. We focus on the convex optimization-based binary classification learning algorithms in this paper. This is because the solution to a convex optimization-based learning algorithm is unique. Dacheng Tao received the B.Eng. degree from the University of Science and Technology of China (USTC), the MPhil degree from the Chinese University of Hong Kong (CUHK) and the PhD from the University of London (Birkbeck). He will join the Department of Computing in the Hong Kong Polytechnic University as an assistant professor. His research interests include biometric research, discriminant analysis, support vector machine, convex optimization for machine learning, multilinear algebra, multimedia information retrieval, data mining, and video surveillance. He published extensively at TPAMI, TKDE, TIP, TMM, TCSVT, CVPR, ICDM, ICASSP, ICIP, ICME, ACM Multimedia, ACM KDD, etc. He gained several Meritorious Awards from the Int’l Interdisciplinary Contest in Modeling, which is the highest level mathematical modeling contest in the world, organized by COMAP. He is a guest editor for special issues of the Int’l Journal of Image and Graphics (World Scientific) and the Neurocomputing (Elsevier). Xuelong Li works at the University of London. He has published in journals (IEEE T-PAMI, T-CSVT, T-IP, T-KDE, TMM, etc.) and conferences (IEEE CVPR, ICASSP, ICDM, etc.). He is an Associate Editor of IEEE T-SMC, Part C, Neurocomputing, IJIG (World Scientific), and Pattern Recognition (Elsevier). He is also an Editor Board Member of IJITDM (World Scientific) and ELCVIA (CVC Press). He is a Guest Editor for special issues of IJCM (Taylor and Francis), IJIG (World Scientific), and Neurocomputing (Elsevier). He co-chaired the 5th Annual UK Workshop on Computational Intelligence and the 6th the IEEE Int’l Conf. on Machine Learning and Cybernetics. He was also a publicity chair of the 7th IEEE Int’l Conf. on Data Mining and the 4th Int’l Conf. on Image and Graphics. He has been on the program committees of more than 50 conferences and workshops. Xindong Wu is a Professor and the Chair of the Department of Computer Science at the University of Vermont. He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests include data mining, knowledge-based systems, and Web information exploration. He has published extensively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI, AAAI, ICML, KDD, ICDM, and WWW, as well as 12 books and conference proceedings. Dr. Wu is the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (by the IEEE Computer Society), the Founder and current Steering Committee Chair of the IEEE International Conference on Data Mining (ICDM), an Honorary Editor-in-Chief of Knowledge and Information Systems (by Springer), and a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AIKP). He is the 2004 ACM SIGKDD Service Award winner. Weiming Hu received the Ph.D. degree from the Department of Computer Science and Engineering, Zhejiang University. From April 1998 to March 2000, he was a Postdoctoral Research Fellow with the Institute of Computer Science and Technology, Founder Research and Design Center, Peking University. Since April 1998, he has been with the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences. Now he is a Professor and a Ph.D. Student Supervisor in the laboratory. His research interests are in visual surveillance, neural networks, filtering of Internet objectionable information, retrieval of multimedia, and understanding of Internet behaviors. He has published more than 80 papers on national and international journals, and international conferences. Stephen J. Maybank received a BA in Mathematics from King’s college, Cambridge in 1976 and a PhD in Computer Science from Birkbeck College, University of London in 1988. He was a research scientist at GEC from 1980 to 1995, first at MCCS, Frimley and then, from 1989, at the GEC Marconi Hirst Research Centre in London. In 1995 he became a lecturer in the Department of Computer Science at the University of Reading and in 2004 he became a professor in the School of Computer Science and Information Systems at Birkbeck College, University of London. His research interests include camera calibration, visual surveillance, tracking, filtering, applications of projective geometry to computer vision and applications of probability, statistics and information theory to computer vision. He is the author of more than 90 scientific publications and one book. He is a Fellow of the Institute of Mathematics and its Applications, a Fellow of the Royal Statistical Society and a Senior Member of the IEEE. For further information see http://www.dcs.bbk.ac.uk/~sjmaybank.  相似文献
3.
Using Bayesian Networks to Manage Uncertainty in Student Modeling   总被引:8,自引:0,他引:8  
When a tutoring system aims to provide students with interactive help, it needs to know what knowledge the student has and what goals the student is currently trying to achieve. That is, it must do both assessment and plan recognition. These modeling tasks involve a high level of uncertainty when students are allowed to follow various lines of reasoning and are not required to show all their reasoning explicitly. We use Bayesian networks as a comprehensive, sound formalism to handle this uncertainty. Using Bayesian networks, we have devised the probabilistic student models for Andes, a tutoring system for Newtonian physics whose philosophy is to maximize student initiative and freedom during the pedagogical interaction. Andes’ models provide long-term knowledge assessment, plan recognition, and prediction of students’ actions during problem solving, as well as assessment of students’ knowledge and understanding as students read and explain worked out examples. In this paper, we describe the basic mechanisms that allow Andes’ student models to soundly perform assessment and plan recognition, as well as the Bayesian network solutions to issues that arose in scaling up the model to a full-scale, field evaluated application. We also summarize the results of several evaluations of Andes which provide evidence on the accuracy of its student models.This revised version was published online in July 2005 with corrections to the author name VanLehn.  相似文献
4.
Synthesizing high-frequency rules from different data sources   总被引:7,自引:0,他引:7  
Many large organizations have multiple data sources, such as different branches of an interstate company. While putting all data together from different sources might amass a huge database for centralized processing, mining association rules at different data sources and forwarding the rules (rather than the original raw data) to the centralized company headquarter provides a feasible way to deal with multiple data source problems. In the meanwhile, the association rules at each data source may be required for that data source in the first instance, so association analysis at each data source is also important and useful. However, the forwarded rules from different data sources may be too many for the centralized company headquarter to use. This paper presents a weighting model for synthesizing high-frequency association rules from different data sources. There are two reasons to focus on high-frequency rules. First, a centralized company headquarter is interested in high-frequency rules because they are supported by most of its branches for corporate profitability. Second, high-frequency rules have larger chances to become valid rules in the union of all data sources. In order to extract high-frequency rules efficiently, a procedure of rule selection is also constructed to enhance the weighting model by coping with low-frequency rules. Experimental results show that our proposed weighting model is efficient and effective.  相似文献
5.
Spectral absorption properties of particulate and dissolved matter were determined for Lake Erie waters in order to investigate the natural variability of the absorption coefficients required as inputs to optical models for converting satellite observations of water colour into water quality information. Particulate absorption measured using the quantitative filter technique yielded absorption spectra containing a fraction that could not be attributed to phytoplankton pigments, living heterotrophs, mineral sediments, or organic detritus but were indicative of additional absorption by a fraction of dissolved organic matter present in colloidal and/or particle-bound form. Erroneously high phytoplankton absorption coefficients measured at short wavelengths using the filter technique suggested that this particle-bound DOM is removed along with phytoplankton pigments during bleaching by sodium hypochlorite and as such is mistakenly incorporated into the phytoplankton absorption signal. Observations suggest that the selective sorption of fractions of DOM onto suspended particles may be responsible for significant variability in the absorption coefficients of particulate and dissolved matter and may be an important contributor to the total spectral absorption signals in Lake Erie waters. This reservoir of coloured organic matter, which to date has not been seriously considered in the optical properties of coastal and inland waters, may produce significant uncertainties in the parameterization of optical models and the interpretation of in situ and remotely sensed aquatic colour signals.  相似文献
6.
Advances in the media and entertainment industries, including streaming audio and digital TV, present new challenges for managing and accessing large audio-visual collections. Current content management systems support retrieval using low-level features, such as motion, color, and texture. However, low-level features often have little meaning for naive users, who much prefer to identify content using high-level semantics or concepts. This creates a gap between systems and their users that must be bridged for these systems to be used effectively. To this end, in this paper, we first present a knowledge-based video indexing and content management framework for domain specific videos (using basketball video as an example). We will provide a solution to explore video knowledge by mining associations from video data. The explicit definitions and evaluation measures (e.g., temporal support and confidence) for video associations are proposed by integrating the distinct feature of video data. Our approach uses video processing techniques to find visual and audio cues (e.g., court field, camera motion activities, and applause), introduces multilevel sequential association mining to explore associations among the audio and visual cues, classifies the associations by assigning each of them with a class label, and uses their appearances in the video to construct video indices. Our experimental results demonstrate the performance of the proposed approach.  相似文献
7.
Exploring video content structure for hierarchical summarization   总被引:4,自引:0,他引:4  
In this paper, we propose a hierarchical video summarization strategy that explores video content structure to provide the users with a scalable, multilevel video summary. First, video-shot- segmentation and keyframe-extraction algorithms are applied to parse video sequences into physical shots and discrete keyframes. Next, an affinity (self-correlation) matrix is constructed to merge visually similar shots into clusters (supergroups). Since video shots with high similarities do not necessarily imply that they belong to the same story unit, temporal information is adopted by merging temporally adjacent shots (within a specified distance) from the supergroup into each video group. A video-scene-detection algorithm is thus proposed to merge temporally or spatially correlated video groups into scenario units. This is followed by a scene-clustering algorithm that eliminates visual redundancy among the units. A hierarchical video content structure with increasing granularity is constructed from the clustered scenes, video scenes, and video groups to keyframes. Finally, we introduce a hierarchical video summarization scheme by executing various approaches at different levels of the video content hierarchy to statically or dynamically construct the video summary. Extensive experiments based on real-world videos have been performed to validate the effectiveness of the proposed approach.Published online: 15 September 2004 Corespondence to: Xingquan ZhuThis research has been supported by the NSF under grants 9972883-EIA, 9974255-IIS, 9983248-EIA, and 0209120-IIS, a grant from the state of Indiana 21th Century Fund, and by the U.S. Army Research Laboratory and the U.S. Army Research Office under grant DAAD19-02-1-0178.  相似文献
8.
Algorithms for a Class of Isotonic Regression Problems   总被引:4,自引:0,他引:4  
The isotonic regression problem has applications in statistics, operations research, and image processing. In this paper a general framework for the isotonic regression algorithm is proposed. Under this framework, we discuss the isotonic regression problem in the case where the directed graph specifying the order restriction is a directed tree with n vertices. A new algorithm is presented for this case, which can be regarded as a generalization of the PAV algorithm of Ayer et al. Using a simple tree structure such as the binomial heap, the algorithm can be implemented in O(n log n) time, improving the previously best known O(n 2 ) time algorithm. We also present linear time algorithms for special cases where the directed graph is a path or a star. Received September 2, 1997; revised January 2, 1998, and February 16, 1998.  相似文献
9.
Continuous similarity-based queries on streaming time series   总被引:2,自引:0,他引:2  
In many applications, local or remote sensors send in streams of data, and the system needs to monitor the streams to discover relevant events/patterns and deliver instant reaction correspondingly. An important scenario is that the incoming stream is a continually appended time series, and the patterns are time series in a database. At each time when a new value arrives (called a time position), the system needs to find, from the database, the nearest or near neighbors of the incoming time series up to the time position. This paper attacks the problem by using fast Fourier transform (FFT) to efficiently find the cross correlations of time series, which yields, in a batch mode, the nearest and near neighbors of the incoming time series at many time positions. To take advantage of this batch processing in achieving fast response time, this paper uses prediction methods to predict future values. When the prediction length is long, FFT is used to compute the cross correlations of the predicted series (with the values that have already arrived) and the database patterns, and to obtain predicted distances between the incoming time series at many future time positions and the database patterns. If the prediction length is short, the direct computation method is used to obtain these predicted distances to avoid the overhead of using FFT. When the actual data value arrives, the prediction error together with the predicted distances is used to filter out patterns that are not possible to be the nearest or near neighbors, which provides fast responses. Experiments show that with reasonable prediction errors, the performance gain is significant. Especially, when the long term predictions are available, the proposed method can handle incoming data at a very fast streaming rate.  相似文献
10.
Hierarchical video browsing and feature-based video retrieval are two standard methods for accessing video content. Very little research, however, has addressed the benefits of integrating these two methods for more effective and efficient video content access. In this paper, we introduce InsightVideo, a video analysis and retrieval system, which joins video content hierarchy, hierarchical browsing and retrieval for efficient video access. We propose several video processing techniques to organize the content hierarchy of the video. We first apply a camera motion classification and key-frame extraction strategy that operates in the compressed domain to extract video features. Then, shot grouping, scene detection and pairwise scene clustering strategies are applied to construct the video content hierarchy. We introduce a video similarity evaluation scheme at different levels (key-frame, shot, group, scene, and video.) By integrating the video content hierarchy and the video similarity evaluation scheme, hierarchical video browsing and retrieval are seamlessly integrated for efficient content access. We construct a progressive video retrieval scheme to refine user queries through the interactions of browsing and retrieval. Experimental results and comparisons of camera motion classification, key-frame extraction, scene detection, and video retrieval are presented to validate the effectiveness and efficiency of the proposed algorithms and the performance of the system.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号