首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24712篇
  免费   1387篇
  国内免费   180篇
电工技术   375篇
综合类   90篇
化学工业   2950篇
金属工艺   767篇
机械仪表   1083篇
建筑科学   1182篇
矿业工程   23篇
能源动力   1458篇
轻工业   570篇
水利工程   136篇
石油天然气   99篇
武器工业   3篇
无线电   4251篇
一般工业技术   5632篇
冶金工业   974篇
原子能技术   120篇
自动化技术   6566篇
  2024年   11篇
  2023年   364篇
  2022年   271篇
  2021年   595篇
  2020年   629篇
  2019年   443篇
  2018年   638篇
  2017年   1155篇
  2016年   1261篇
  2015年   1067篇
  2014年   1449篇
  2013年   1805篇
  2012年   1274篇
  2011年   1491篇
  2010年   1291篇
  2009年   1372篇
  2008年   1176篇
  2007年   1426篇
  2006年   1305篇
  2005年   1103篇
  2004年   926篇
  2003年   894篇
  2002年   780篇
  2001年   610篇
  2000年   509篇
  1999年   479篇
  1998年   365篇
  1997年   360篇
  1996年   271篇
  1995年   201篇
  1994年   141篇
  1993年   139篇
  1992年   71篇
  1991年   58篇
  1990年   45篇
  1989年   38篇
  1988年   28篇
  1987年   32篇
  1986年   14篇
  1985年   41篇
  1984年   33篇
  1983年   30篇
  1982年   15篇
  1981年   20篇
  1980年   9篇
  1979年   10篇
  1978年   5篇
  1977年   4篇
  1976年   11篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
3.
Pain management during dental procedures is a cornerstone for successful daily practice. In current practice, the traditional needle and syringe injection is used to administer local anesthesia. However, the appearance of long needles and the pain associated with it often leads to dental anxiety deterring timely interventions. Microneedles (MNs) have emerged as a minimally invasive alternative to hypodermic needles and shown to be effective in transdermal drug delivery applications. In this article, the potential use of MNs for local anesthesia delivery in dentistry is explored. The development of a novel conductive MN array that can be used in combination with iontophoresis technique to achieve drug penetration through the oral mucosa and the underlying bone tissue is presented. The conductive MN array plays a dual-role, creating micro-conduits and lowering the resistance of the oral mucosa. The reduced tissue resistance further enhances the application of a low-voltage current that is able to direct and accelerate the drug molecules to target the sensory nerves supplying teeth. The successful delivery of lidocaine using this new strategy in a clinically relevant rabbit incisor model is shown to be as effective as the current gold standard.  相似文献   
4.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
5.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
6.
7.
8.
The structural diversity of polyphenols and the inherent limitations of current extraction techniques pose a challenge to extract polyphenols using a simple and green method. Hence, in this study, a method was developed to simultaneously fractionate multiple classes of polyphenols by only varying ethanol-water solutions. Honeybush tea, which is rich in polyphenols, was selected as a model for this study. Solvent extraction followed by solid-phase extraction (SPE) was developed to obtain a polyphenol-rich fraction from six honeybush samples. Based on a gradient elution programme (10%, 30%, 50%, 70% and 90% (v/v) ethanol-water solution) of SPE, the Strata X cartridge showed a better recovery of most targeted polyphenols under 0.9 mL of the drying volume and 1 mL min−1 of the dispensing speed. The elution programme for fractionating most polyphenols was as follows: single elution with 50% ethanol, followed by twice elution with 70% ethanol. The antioxidant capacity was used to analyse the differences among the polyphenol-rich fractions from six honeybush samples. Principal component analysis (PCA) revealed that unfermented C. genistoides (GG) has the greatest antioxidant capacity among the honeybush species studied. Additionally, mangiferin, isomangiferin and vicenin-2 were the main contributors to the antioxidant capacity in six honeybush fractions according to the correlation study.  相似文献   
9.
High-efficiency Yb:Y2O3 laser ceramics were fabricated using the vacuum-sintering plus hot isostatic pressing (HIP) without sintering additives. High-purity well-dispersed nanocrystalline Yb:Y2O3 powder was synthesized using a modified co-precipitation method in-house. The green bodies were first vacuum sintered at a temperature as low as 1430°C and then HIPed at 1450°C. Finally, the samples were air annealed at 800°C for 10 h. Although no sintering aids were used, full density of the samples with excellent optical homogeneity and an inline transmission of 80% at 400 nm could be obtained. Moreover, photodarkening phenomenon was not detected in the ceramics. Preliminary laser experiment with the fabricated ceramics in a two-mirror cavity has demonstrated 32 W continuous-wave (CW) output at ∼1077 nm with an optical-to-optical conversion efficiency of 58.2%. To the best of our knowledge, this is so far the highest CW output power and optical-to-optical conversion efficiency achieved with the Yb3+-doped sesquioxide ceramics in a simple two-mirror cavity.  相似文献   
10.
《水科学与水工程》2022,15(1):29-39
In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号