首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   9篇
  自动化技术   9篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
原继东  王志海  孙艳歌  张伟 《软件学报》2017,28(11):3002-3017
基于时序对齐的k近邻分类器是时间序列分类的基准算法.在实际应用中,同类复杂时间序列经常展现出不同的全局特性.由于传统时序对齐方法平等对待实例特征并忽略其局部辨别特性,因此难以准确、高效地处理此类具有挑战性的时间序列.为了有效对齐并分类复杂时间序列,提出了一种具有辨别性的局部加权动态时间扭曲方法,用于发现同类复杂时间序列的共同点以及异类序列间的不同点.同时,通过迭代学习时间序列对齐点的正例集与负例集,获取每条复杂时间序列中每个特征的辨别性权重.在多个人工和真实数据集上的实验结果表明了基于局部加权对齐策略的k近邻分类器所具有的可解释性与有效性,并将所提出方法扩展至多变量时间序列分类问题中.  相似文献
2.
柴变芳  于剑  贾彩燕  王静红 《软件学报》2013,24(11):2699-2709
随机块模型可以生成各种不同结构(称作广义社区,包括传统社区、二分结构、层次结构等)的网络,也可以根据概率对等原则发现网络中的广义社区.但简单的随机块模型在网络生成过程建模和模型学习方面存在许多问题,导致不能很好地发现实际网络的结构,其扩展模型GSB(general stochastic block)基于链接社区思想发现广义社区,但时间复杂度限制其在中大型规模网络中的应用.为了在无任何先验的情形下探索不同规模网络的潜在结构,基于GSB 模型设计一种快速算法FGSB,更快地发现网络的广义社区.FGSB 在迭代过程中动态学习网络结构参数,将GSB 模型的参数重新组织,减少不必要的参数,降低算法的存储空间;对收敛节点和边的参数进行裁剪,减少每次迭代的相关计算,节省算法的运行时间.FGSB 与GSB 模型求解算法有相同的结构发现能力,但FGSB 耗费的存储空间和运行时间比GSB 模型求解算法要低.在不同规模的人工网络和实际网络上验证得出:在近似相同的准确率下,FGSB 比GSB 模型求解算法快,且可发现大型网络的广义社区.  相似文献
3.
杨柳  景丽萍  于剑 《软件学报》2015,26(11):2762-2780
目标领域已有类别标注的数据较少时会影响学习性能,而与之相关的其他源领域中存在一些已标注数据.迁移学习针对这一情况,提出将与目标领域不同但相关的源领域上学习到的知识应用到目标领域.在实际应用中,例如文本-图像、跨语言迁移学习等,源领域和目标领域的特征空间是不相同的,这就是异构迁移学习.关注的重点是利用源领域中已标注的数据来提高目标领域中未标注数据的学习性能,这种情况是异构直推式迁移学习.因为源领域和目标领域的特征空间不同,异构迁移学习的一个关键问题是学习从源领域到目标领域的映射函数.提出采用无监督匹配源领域和目标领域的特征空间的方法来学习映射函数.学到的映射函数可以把源领域中的数据在目标领域中重新表示.这样,重表示之后的已标注源领域数据可以被迁移到目标领域中.因此,可以采用标准的机器学习方法(例如支持向量机方法)来训练分类器,以对目标领域中未标注的数据进行类别预测.给出一个概率解释以说明其对数据中的一些噪声是具有鲁棒性的.同时还推导了一个样本复杂度的边界,也就是寻找映射函数时需要的样本数.在4个实际的数据库上的实验结果,展示了该方法的有效性.  相似文献
4.
刘华锋  景丽萍  于剑 《软件学报》2018,29(2):340-362
随着社交网络的发展,融合社交信息的推荐成为推荐领域中的一个研究热点.基于矩阵分解的协同过滤推荐方法(简称为矩阵分解推荐方法)因其算法可扩展性好及灵活性高等诸多特点,成为研究人员在其基础之上进行社交推荐模型构建的重要原因.本文围绕基于矩阵分解的社交推荐模型,依据模型的构建方式对社交推荐模型进行综述.在实际数据上对已有代表性社交推荐方法进行对比,分析各种典型社交推荐模型在不同视角下的性能(如整体用户、冷启动用户、长尾物品).最后,分析基于矩阵分解的社交推荐模型及其求解算法存在的问题,并对未来研究方向与发展趋势进行了展望.  相似文献
5.
杨柳  于剑  刘烨  詹德川 《软件学报》2017,28(11):2971-2991
多源数据学习在大数据时代具有极其重要的意义.目前,多源数据学习算法研究远远超前于多源数据学习理论研究,经典的机器学习理论难以应用于多源数据学习,更难以提供多源数据学习算法在实际应用中的理论保障.从学习的最终目的是知识这一认知切入点出发,对人类学习的认知机理、机器学习的三大经典理论(计算学习理论、统计学习理论和概率图理论)以及多源数据学习算法设计这3个方面的研究进展进行总结,最后给出未来研究方向的思考.  相似文献
6.
陈恩红  于剑 《软件学报》2014,25(9):1887-1888
自2008年《Nature》杂志发表大数据专辑以来,大数据得到越来越多的关注.2012年,美国和中国分别将大数据提升到国家战略高度.大数据技术是一个典型的跨领域研究方向,在数据的采集、存储、传输、管理、安全和分析等诸多方面均面临着挑战.在大数据分析方面,我国已经有国家自然科学基金重点项目、国家重点基础研究发展计划(973)在内的多个立项支持,并在学术界和工业界取得了一些有影响的研究与应用成果.然而,作为一个新兴的研究方向,大数据分析依然面临诸多挑战.本专刊收录的21篇论文反映了我国学者在大数据分析领域的部分近期研究成果.  相似文献
7.
柴变芳  贾彩燕  于剑 《软件学报》2014,25(12):2753-2766
随着万维网和在线社交网站的发展,规模大、结构复杂、动态性强的大规模网络应用而生。发现这些网络的潜在结构,是分析和理解网络数据的基本途径。概率模型以其灵活的建模和解释能力、坚实的理论框架成为各领域研究网络结构发现任务的有效工具,但该类方法存在计算瓶颈。近几年出现了一些基于概率模型的大规模网络结构发现方法,主要从网络表示、结构假设、参数求解这3个方面解决计算问题。按照模型参数求解策略将已有方法归为两类:随机变分推理(stochastic variational inference)方法和在线EM(online expectation maximazation)方法,详细分析各方法的设计动机、原理和优缺点。定性和定量地对比、分析典型方法的特点和性能,并提出大规模网络结构发现模型的设计原则。最后,概括该领域研究的核心问题,展望未来发展趋势。  相似文献
8.
原继东  王志海  韩萌 《软件学报》2015,26(9):2311-2325
时间序列shapelets是时间序列中能够最大限度地表示一个类别的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将shapelets的发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程,并能够灵活应用不同的分类策略.但该方法也存在不足:一是在shapelets转换时,用于产生最好分类结果的shapelets数量是很难确定的;二是被选择的shapelets之间往往存在着较大的相似性.针对这两个问题,首先提出了一种简单有效的shapelet剪枝技术,用于过滤掉相似的shapelets;其次,提出了一种基于shapelets覆盖的方法来确定用于数据转换的shapelets的数量.通过在多个数据集上的测试实验,表明了所提出的算法具有更高的分类准确率.  相似文献
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号