首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 46 毫秒
1
1.
随着网民的数量不断增加,用户上网产生的数据量也在成倍增多,随处可见各种各样的评论数据,所以构建一种高效的情感分类模型就非常有必要.本文结合Word2Vec与LSTM神经网络构建了一种三分类的情感分类模型:首先用Word2Vec词向量模型训练出情感词典,然后利用情感词典为当前训练集数据构建出词向量,之后用影响LSTM神经网络模型精度的主要参数来进行训练.实验发现:当数据不进行归一化,使用He初始化权重,学习率为0.001,损失函数选择均方误差,使用RMSProp优化器,同时用tanh函数作为激活函数时,测试集的总体准确率达到了92.28%.与传统的Word2Vec+SVM方法相比,准确率提高了大约10%,情感分类的效果有了明显的提升,为LSTM模型的情感分类问题提供了新的思路.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号