首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199729篇
  国内免费   3071篇
  完全免费   29131篇
  自动化技术   231931篇
  2022年   2038篇
  2021年   2040篇
  2020年   1688篇
  2019年   2734篇
  2018年   8702篇
  2017年   7965篇
  2016年   7787篇
  2015年   7637篇
  2014年   12896篇
  2013年   23784篇
  2012年   17216篇
  2011年   16369篇
  2010年   13422篇
  2009年   13660篇
  2008年   14414篇
  2007年   12704篇
  2006年   10600篇
  2005年   8008篇
  2004年   7103篇
  2003年   5654篇
  2002年   5014篇
  2001年   3929篇
  2000年   2760篇
  1999年   2588篇
  1998年   2211篇
  1997年   2084篇
  1996年   1804篇
  1995年   1685篇
  1994年   1524篇
  1993年   1343篇
  1992年   1263篇
  1991年   1040篇
  1990年   850篇
  1989年   738篇
  1988年   668篇
  1987年   501篇
  1986年   513篇
  1985年   520篇
  1984年   460篇
  1983年   422篇
  1982年   382篇
  1981年   440篇
  1980年   310篇
  1979年   360篇
  1978年   325篇
  1977年   313篇
  1976年   315篇
  1975年   141篇
  1974年   145篇
  1973年   143篇
  1972年   114篇
  1971年   114篇
  1970年   90篇
  1969年   88篇
  1968年   110篇
  1967年   97篇
  1966年   63篇
  1965年   19篇
  1964年   18篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有231931条查询结果,搜索用时 218 毫秒
1.
Rough sets   总被引:1327,自引:0,他引:1327  
We investigate in this paper approximate operations on sets, approximate equality of sets, and approximate inclusion of sets. The presented approach may be considered as an alternative to fuzzy sets theory and tolerance theory. Some applications are outlined.  相似文献
2.
A Tutorial on Support Vector Machines for Pattern Recognition   总被引:731,自引:4,他引:727  
The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.  相似文献
3.
Support-Vector Networks   总被引:699,自引:0,他引:699  
Cortes  Corinna  Vapnik  Vladimir 《Machine Learning》1995,20(3):273-297
Thesupport-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data.High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.  相似文献
4.
Distinctive Image Features from Scale-Invariant Keypoints   总被引:497,自引:6,他引:491  
This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.  相似文献
5.
Least Squares Support Vector Machine Classifiers   总被引:393,自引:1,他引:392  
In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM's. The approach is illustrated on a two-spiral benchmark classification problem.  相似文献
6.
Induction of Decision Trees   总被引:389,自引:5,他引:384  
Quinlan  J.R. 《Machine Learning》1986,1(1):81-106
The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.  相似文献
7.
Snakes: Active contour models   总被引:358,自引:24,他引:334  
A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.  相似文献
8.
Color indexing   总被引:327,自引:11,他引:316  
Computer vision is embracing a new research focus in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, realistic environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the location of a known object. Color can be successfully used for both tasks.This article demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique calledHistogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection, which allows real-time indexing into a large database of stored models. For solving the location problem it introduces an algorithm calledHistogram Backprojection, which performs this task efficiently in crowded scenes.  相似文献
9.
Bagging Predictors   总被引:321,自引:0,他引:321  
Breiman  Leo 《Machine Learning》1996,24(2):123-140
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.  相似文献
10.
基于条件信息熵的决策表约简   总被引:314,自引:8,他引:306  
Rough集理论是近年来发展起来的一种有效地处理不精确、不确定、含糊信息的数学理论方法,在机器学习、数据挖掘、智能数据分析、控制算法获取等领域取得了很大的成功。研究者从不同的角度对这个理论进行研究。本文将从信息论观点出发对Rough集理论的基本概念和主要运算进行分析讨论,通过与Rough集理论的代数观点进行比较分析,得到这两种观点下的一些等价性质和不同的特性,并基于条件信息熵提出决策表的约简算法。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号