首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7417篇
  免费   708篇
  国内免费   2203篇
电工技术   153篇
综合类   2193篇
化学工业   1313篇
金属工艺   426篇
机械仪表   1534篇
建筑科学   33篇
矿业工程   44篇
能源动力   482篇
轻工业   235篇
水利工程   26篇
石油天然气   28篇
武器工业   235篇
无线电   1422篇
一般工业技术   1209篇
冶金工业   180篇
原子能技术   29篇
自动化技术   786篇
  2024年   7篇
  2023年   188篇
  2022年   236篇
  2021年   235篇
  2020年   326篇
  2019年   237篇
  2018年   166篇
  2017年   218篇
  2016年   207篇
  2015年   261篇
  2014年   578篇
  2013年   708篇
  2012年   1091篇
  2011年   1110篇
  2010年   691篇
  2009年   920篇
  2008年   571篇
  2007年   707篇
  2006年   507篇
  2005年   225篇
  2004年   87篇
  2003年   93篇
  2002年   103篇
  2001年   83篇
  2000年   54篇
  1999年   139篇
  1998年   102篇
  1997年   111篇
  1996年   109篇
  1995年   89篇
  1994年   53篇
  1993年   88篇
  1992年   15篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
2.
研究了3种微通道板基底羟基化的方法,测量了羟基化处理后微通道板基底表面水接触角及通道端面的形貌变化,分析了各种方法中微通道板基底的亲水性和腐蚀情况。实验结果表明:氨水双氧水溶液对基体表面的亲水性能提升不大,NaOH溶液对基体有腐蚀作用,经食人鱼溶液处理的基体表面亲水性明显提高且无腐蚀作用。研究了微通道板在食人鱼溶液中的浸泡时间和浸泡温度对表面亲水性的影响。结果表明:随着浸泡温度的增加,微通道板表面水接触角先减小后增大,当温度为80℃时达到极小值,浸泡时间对微通道板表面的亲水性影响不大。最终确定了微通道板表面羟基化工艺:浸泡温度为80℃,静置时间为20~60 min。  相似文献   
3.
4.
5.
Extensive researches on scintillators have been executed to satisfy the excellent radiation detection materials in broad applications. However, practical application of conventional scintillators is limited due to the limitations of high cost, time-consuming fabrication process and insufficient radioluminescence. Herein, high density precursor glass doped with Tb3+ was designed to absorb X-ray efficiently and produce green emission. Molecular dynamics simulation was used to simulate the phase separation process in melting process. Then, Tb3+-doped Ba0.84Gd0.16F2.16 glass ceramics (GCs) with excellent structural and optical properties were elaborated by melt quenching technic and further heat treating. Their structural properties, photoluminescence (PL) and X-ray excited luminescence (XEL) were explored detailedly. The internal quantum efficiency of PL is 64 % in GCs. The XEL intensity is 192 % of that of Bi4Ge3O12 (BGO) commercial scintillator. Our results suggest that Ba0.84Gd0.16F2.16:Tb3+ GCs might have potential application in X-ray detection.  相似文献   
6.
To improve the properties of diblock copolystyrene-based anion exchange membranes (AEMs), a series of AEMs with comb-shaped quaternary ammonium (QA) architecture (QA-PSm-b-PDVPPAn-xC where x denotes the number of carbon atoms in different alkyl tail chains and has values of 1, 4, 8, and 10 and C denotes carbon) were designed and synthesized via subsequent quaternization reactions with three different alkyl halogens (methyl iodide and N-alkane bromines (CH3[CH2] x-1Br where x = 4, 8, and 10). Compared with triblock analogues quaternized with methyl iodide in our previous research, QA-PSm-b-PDVPPAn-xC (x = 4, 8, and 10) AEMs are more flexible with the introduction of a long alkyl tail chain; this probably impedes crystallization of the rigid polystyrene-based main chain and induces sterically adjustable ionic association. An increase in the pendant alkyl tail chain length generally led to enhanced microphase separation of the obtained AEMs, and this was confirmed using small-angle X-ray scattering and atomic force microscopy. The highest conductivity (25.5 mS cm−1) was observed for QA-PS120-b-PDVPPA80-10C (IEC = 1.94 meq g–1) at 20 °C. Furthermore, the water uptake (<30%) and swelling ratio (<13.1%) of QA-PSm-b-PDVPPAn-xC AEMs are less than half of these corresponding values for their triblock counterparts. The QA-PS120-b-PDVPPA80-10C membrane retained a maximum stability that was as high as 86.8% of its initial conductivity after a 40-day test (10 M NaOH, 80 °C), and this was probably because of the steric shielding of the cationic domains that were surrounded by the longest alkyl tail chains. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47370.  相似文献   
7.
All inorganic remote phosphor-in-glass film exhibits excellent properties in high power white light-emitting-diodes (WLEDs) thanks to their easy fabrication and thermal stability. Herein, fabrication of (Lu, Y)3Al5O12: Ce3+ (LuYAG: Ce)phosphors embedded in borosilicate glass film by the conventional solid state reaction and spin coating technology has been reported. The introduction of Y3+ ions reduces the difference of relative growth rate along some directions in growth of LuYAG microparticles, yielding a finer grain with smooth edges. By adjusting the molar concentration of Y3+ ions in LuAG phosphor, a series of tunable broadband emission from green to yellow region is observed and maintains excellent thermal stability. Meanwhile, the decay curves of samples with different Y3+ are almost same. SEM images show that phosphor particles are homogenously distributed within the glass matrix and keep their original morphology, suggesting the phosphor-in-glass films were synthesized as expected. Finally, a simple WLEDs based on the films was constructed using the commercial blue chip. The correlated color temperature ranging from 4853K to 4627K and high color rendering index from 81.4–79.7 were obtained. Upon the different driving current, the chromaticity coordinates of as-fabricated film exhibit good light color stability. These results bring an inspiring insight to tune the luminescent performance for remote WLEDs.  相似文献   
8.
Rapid advancements in wearable electronics impose the challenge on power supply devices. Herein, a flexible single-electrode triboelectric nanogenerator (SE-TENG) that enables both human motion sensing and biomechanical energy harvesting is reported. The SE-TENG is fabricated by interpenetrating Ag-coated polyethylene terephthalate (PET) nanofibers within a polydimethylsiloxane (PDMS) elastomer. The Ag coating and PDMS are performed as the electrode and dielectric material for the SE-TENG, respectively. The Ag-coated PET nanofibers enlarge the electrode surface area, which is beneficial to increase sensing sensitivity. The flexible SE-TENG sensor shows the capability of outputting alternating electrical signals with an open-circuit voltage up to 50 V and a short-circuit current up to 200 nA in response to externally applied pressure. It is used to sense various types of human motions and harvest electric energy from body motion. The harvested energy can successfully power wearable electronics, such as an electronic watch and light-emitting diode. Therefore, the as-prepared SE-TENG sensor with a pressure response and self-powered capability provides potential applications in wearable sensors or flexible electronics for personal healthcare and human–machine interfaces.  相似文献   
9.
Poor antioxidant and thermal-shock capacities of C/C composites thermal barrier coating (TBC) caused by cracking and shedding of coatings has been a major obstacle blocking the development of C/C composites. Herein, in-situ growth of whisker reinforced silicon carbide transition layer and inter-embedding mechanism of multi-gradient coatings were brought into the design of TBC to enhance the antioxidant and thermal-shock capacities. A three-layer gradient coating SiC-SiCw/ZrB2-SiC/ZrSiO4-aluminosilicate glass (ZAG) from inside to outside, in which ZrB2-SiC/ZAG serve as oxygen barrier layers with self-healing ability and SiC-SiCw provides thermal stress buffering and bonding against cracking and shedding of coatings, is designed. The ZAG mainly forms a dense oxygen blocking frontier with self-healing ability through fluidized glass, while the ZrB2-SiC can react actively with infiltrated oxygen in a way of self-sacrifice, preventing oxygen erosion to C/C matrix and SiC-SiCw transition layer. As a result, the collaborative work among layers endows this coating with excellent high temperature service performance. This work provides a new insight for the design of excellent TBC.  相似文献   
10.
Recently, quorum sensing (QS) inhibitors (QSIs) have been combined with antibiotics to enhance antibiofilm efficacy in vitro and in vivo. However, targeting QS signals alone is not enough to prevent bacterial infections. Drug resistance and recurrence of biofilms makes it difficult to eradicate. Herein, photodynamic therapy (PDT) is selected to unite QSIs and antibiotics. A synergistically antibiofilm system, which combines QSIs, antibiotics, and PDT based on hollow carbon nitride spheres (HCNSs) is envisaged. First, HCNS provides the multidrug delivering ability, enabling QSIs and antibiotics to be released in sequence. Subsequently, multistage releases sensitize bacteria effectively, potentiating the chemotherapeutic effects of the antibiotics. Finally, the integration of QSIs and PDT not only minimizes the possibility of drug resistance, but also overcomes the problem of limited mass and extension of PDT. Even after 48 h of incubation, the bacterial biofilm is obviously inhibited. And its biofilm disperse efficiency exceeds 48% (compared with QSI‐potentiated chemotherapy group) and 40% (compared with PDT group). Besides, the inhibition of the QS system influences phenotypes related to virulence factor production and surface hydrophobicity, which weaken biofilm invasion and formation. Eventually, this system is applied to disperse bacterial biofilm in vivo. Overall, PDT and QS modulation are devoted to eradicate drug resistance and recurrence of the biofilm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号