首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6753篇
  免费   828篇
  国内免费   441篇
电工技术   355篇
技术理论   1篇
综合类   1504篇
化学工业   963篇
金属工艺   389篇
机械仪表   486篇
建筑科学   298篇
矿业工程   17篇
能源动力   255篇
轻工业   194篇
水利工程   110篇
石油天然气   22篇
武器工业   21篇
无线电   862篇
一般工业技术   965篇
冶金工业   33篇
原子能技术   11篇
自动化技术   1536篇
  2024年   18篇
  2023年   190篇
  2022年   204篇
  2021年   251篇
  2020年   283篇
  2019年   235篇
  2018年   179篇
  2017年   221篇
  2016年   287篇
  2015年   249篇
  2014年   520篇
  2013年   519篇
  2012年   773篇
  2011年   823篇
  2010年   703篇
  2009年   762篇
  2008年   444篇
  2007年   509篇
  2006年   370篇
  2005年   132篇
  2004年   63篇
  2003年   55篇
  2002年   55篇
  2001年   45篇
  2000年   33篇
  1999年   54篇
  1998年   10篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1980年   3篇
  1979年   4篇
排序方式: 共有8022条查询结果,搜索用时 46 毫秒
1.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
2.
根据叶用甜菜品种的观赏特性,运用层次分析法初步建立叶用甜菜品种观赏价值的评价模型,包含叶梗、叶片和整体感3个方面共11个评价因子。结果表明:叶梗是评价叶用甜菜观赏价值的核心要素;叶梗色、叶梗厚、叶丛型是重要因子,分别以红、粉红、粉白叶梗,叶梗厚度厚和直立型叶丛为优良性状。利用该评价模型对8个甜菜品种进行观赏价值综合评价,筛选出‘Clnx-blush2018'、'Clnx-fen2018’和‘荷兰必久'3个观赏价值高、适于市场推广叶品种。  相似文献   
3.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
4.
5.
《Ceramics International》2022,48(18):26196-26205
Sea urchin-like LiAlO2@NiCoO2 hybrid composites with core-shell structure assembled with nanoneedles have been successfully fabricated through a facile hydrothermal route followed by a calcination procedure in N2 for the first time. The sea urchin-like architecture with large accessible surface can offer numerous active sites for redox reaction. The synergy of two advantages has dramatically improved the electrochemical behavior in terms of specific capacity, cycle performance and rate capability, especially at high current densities. The LiAlO2(5.0 wt%)@NiCoO2 displays charge capacities are 1309.0 and 933.6 mAh g?1 at 0.5 and 1A g?1, respectively, after 400 cycles. However, the charge capacities of bare NiCoO2 are only 562.9 and 476.7 mAh g?1 at corresponding rates. Especially, LiAlO2(5.0 wt%)@NiCoO2 preserves 358.1 mAh g?1 after 500 cycles at 2A g?1 with a capacity retention of 74%. The superior electrochemical property is related to the sea urchin-like nature and the ingenious composition design. In addition, the DFT calculation result shows that the formed stable, well-coordinated, and metallic interface between LiAlO2 and NiCoO2 are very helpful for reducing the interfacial impedance and beneficial for the improved rate capability of the materials. Therefore, such LiAlO2@NiCoO2 composites with unique morphology demonstrate a huge potential as electrode materials for Li-ion batteries.  相似文献   
6.
This paper studies distributed estimation problems for multi-sensor systems with missing data. Missing data may occur during sensor measuring or data exchanging among sensor nodes due to unreliability of communication links or external disturbances. Missing data include random missing measurements of sensor itself and random missing estimates of neighbor nodes. Three distributed Kalman filter (DKF) algorithms with the Kalman-like form are designed for each sensor node. When it is available whether a datum is missing or not at each time, an optimal DKF (ODKF) dependent on the knowledge of missing data is presented, where filter gains and covariance matrices require online computing. To reduce online computational cost, a suboptimal DKF (SDKF) is presented, where filter gains and covariance matrices dependent on missing probabilities can be computed offline. When it is unavailable whether a datum is missing or not, a probability-based DKF (PDKF) dependent on missing probabilities is presented. For each DKF algorithm, an optimal Kalman filter gain for measurements of sensor itself and different optimal consensus filter gains for state estimates of its neighbor nodes are designed in the linear unbiased minimum variance (LUMV) sense, respectively. Mean boundedness of covariance matrix of the proposed ODKF is analyzed. Stability and steady-state properties of the proposed SDKF and PDKF are analyzed. Also, the performance of three DKF algorithms is compared. Simulation examples demonstrate effectiveness of the proposed algorithms.  相似文献   
7.
《Ceramics International》2021,47(22):31713-31723
Continuous carbon-fibre-reinforced Cs-geopolymer composite (Cf/CsGP) were prepared, and its in-situ conversion was investigated during high-temperature treatments. The effect of treatment temperature on the thermal evolution process and mechanical properties of the resulting products were systematically evaluated. The results indicated that the crystallization temperature of Cf/CsGP composite was considerably delayed because the amorphous structure of carbon fibres was not conducive as a nucleation substrate for pollucite derived from the CsGP matrix. Moreover, the integrity of the corresponding resulting products derived from the Cf/CsGP composite were damaged due to thermal shrinkage that occurred during the high-temperature treatment process. When treatment temperature was ≤1200oC, the mechanical properties of the corresponding products exhibited an upward trend, which was ascribed to the improvement of the densification degree of the resulting composite and well interface-bonding state between carbon fibres and pollucite. However, the mechanical properties of the resulting composites decreased with the treatment temperature continued increased from 1200 to 1400oC. This phenomenon was attributed to the impairment of fibre properties caused by interfacial reactions.  相似文献   
8.
The photoluminescence, dielectric relaxation, ferroelectric hysteresis, and field-induced strain properties of Pr3+-doped 0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PIN-PMN-PT:Pr3+) multifunctional ceramics have been investigated. It was found that Pr3+ doping enhanced the dielectric diffuseness and relaxation behavior of PIN-PMN-PT ceramics. Slim P-E loops and S-E curves appear in PIN-PMN-PT:Pr3+ ceramics when the Pr3+ doping concentration reaches 1.4 mol%. Local domain configurations associated with phase transitions were investigated by piezoresponse force microscopy (PFM). Large electrostrictive coefficient Q33 (?0.03 m4/C2) and high energy-storage efficiency η (92%) were obtained in 2 mol% Pr3+-doped PIN-PMN-PT ceramic in the ergodic relaxor (ER) phase at room temperature. The giant electrostrictive effect and excellent energy-storage performance are related to the field-induced dynamic behavior of polar nanoregions (PNRs). The results show that the PIN-PMN-PT:Pr3+ system is an excellent multifunctional material for making electromechanical and energy storage devices.  相似文献   
9.
《Ceramics International》2019,45(14):17336-17343
Fluoridated hydroxyapatite (FHA) [Ca10(PO4)6Fx(OH)2−x, x = 0–2] is believed to be a promising calcium phosphate (CaP) to replace pure hydroxyapatite (HA) for next-generation implants, owing to its better biocompatibility, higher antibacterial activity, and lower solubility. Notably, the shape and size of the CaP crystals play key roles in their performance and can influence their applications. One-dimensional (1D) FHA nanorods are important CaP materials which have been widely used in regenerative medicine applications such as restorative dentistry. Unfortunately, the traditional synthesis methods for FHA nanorods either employ surfactants or take a relatively long time. In this study, we aimed to propose a facile synthesis route to fabricate FHA nanorods without any surfactants using an electrochemical deposition method for the first time. This study focused on preparing FHA nanorods without the assistance of any surfactant, unlike the traditional synthesis methods, to avoid chemical impurities. FHA nanorods with lengths of 124–2606 nm, diameters of 28–211 nm, and aspect ratios of 4.4–21.8 were synthesized using the electrochemical method, followed by a heat treatment. For the as-synthesized FHA nanorods, the Ca/P ratio was 1.60 and the atomic concentration of F was 2.06 at.%. An ultrastructure examination revealed that each FHA nanorod possessed long-range order, good crystallinity, and a defect-free lattice with a certain crystallographic plane orientation along the whole rod. In short, we propose a novel, surfactant-free, cost-saving, and more efficient route to synthesize FHA nanorods which can be widely applied in multiple biomedical applications, including drug delivery, bone repair, and restorative dentistry.  相似文献   
10.
Functionally graded ceramics (FGC), which combine properties of different ceramics in one part, usually have better comprehensive function and structural efficiency. In this study, four different gradient transition Al2O3-ZrO2 FGC samples were prepared by laser directed energy deposition (LDED) method. The results show that there is an obvious interface in direct transition sample. The transition section bears tensile stress caused by difference of thermophysical properties of materials, resulting in significant longitudinal cracks. Element transition in interface region shows a step sharp transition. The direct transition sample shows intergranular fracture and the bonding strength is very low. Gradient transition mode can effectively suppress cracks, and avoid the step transition of microstructure and elements. Elements, microhardness of 25, 20 wt% FGC samples realized a nearly linear smooth transition. The interface fracture of FGC samples changed to transgranular fracture, bonding strength was significantly improved, and the maximum flexural strength reached 160.19 MPa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号