首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9746篇
  免费   1533篇
  国内免费   941篇
电工技术   108篇
综合类   3091篇
化学工业   246篇
金属工艺   34篇
机械仪表   191篇
建筑科学   7篇
矿业工程   4篇
能源动力   41篇
轻工业   12篇
水利工程   5篇
石油天然气   6篇
武器工业   66篇
无线电   5587篇
一般工业技术   240篇
冶金工业   14篇
原子能技术   13篇
自动化技术   2555篇
  2024年   6篇
  2023年   162篇
  2022年   199篇
  2021年   251篇
  2020年   231篇
  2019年   246篇
  2018年   229篇
  2017年   417篇
  2016年   433篇
  2015年   517篇
  2014年   709篇
  2013年   800篇
  2012年   1085篇
  2011年   1059篇
  2010年   1063篇
  2009年   1183篇
  2008年   782篇
  2007年   581篇
  2006年   451篇
  2005年   403篇
  2004年   366篇
  2003年   204篇
  2002年   178篇
  2001年   153篇
  2000年   164篇
  1999年   52篇
  1998年   35篇
  1997年   59篇
  1996年   56篇
  1995年   34篇
  1994年   37篇
  1993年   46篇
  1992年   27篇
  1991年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):32710-32719
The formation of micro-cracks in Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode particles is an extremely important factor affecting the electrochemical characteristics after long-term cycling. Generally, cracks can be divided into intergranular crack and intracrystalline crack according to their positions. Coating has been confirmed as a highly effective strategy to relieve intergranular cracks. However, the intracrystalline cracks of primary-like particles have rarely been studied. In this work, ethoxy functional polysiloxane (EPS) was directly coated on the surface of original NCM811 by tetraethyl orthosilicate (TEOS) hydrolytic polycondensation method without any additives. Then, the microstructure, micromorphology, surface state and electrochemical properties were investigated in detail by XRD, SEM, TEM, CV and EIS. The results displayed that the micro-cracks of primary-like particles were effectively suppressed under appropriate EPS coating. Accordingly, excellent capacity retention of 95.6% (100 cycles, 1C) and rate performance (144.6 mA h/g, 5C) were obtained. These improved mechanical and electrochemical properties are considered to be related to the EPS stress buffer layer, suppressed oxygen vacancies, inhibited phase transition and reduced volume change.  相似文献   
2.
《Ceramics International》2021,47(23):32747-32755
To investigate the nonstoichiometric effect of (Bi0.5Na0.5)TiO3 (BNT) ceramics on their properties, we propose a novel chemical expression, (Bi0.5+xNa0.5−3x)TiO3. The nonstoichiometric effect of BNT can be explored in compounds with this composition without being hampered by the charge imbalance problem. With x ranging from −0.02 to 0.02, we find that the morphological, dielectric, ferroelectric, and electrostrain properties differ considerably between Na-rich and Bi-rich ceramic samples. The average grain size (AGS) increased significantly in Na-rich samples compared to that in stoichiometric BNT, while it decreased slightly in Bi-rich samples. The dielectric characteristics measured from 30 °C to 500 °C indicate that conductivity is activated in Na-rich nonstoichiometric samples but is effectively suppressed in Bi-rich nonstoichiometric samples. The ferroelectric properties also show the same trend. In Na-rich samples, elliptical polarization against electric field (P-E) hysteresis loops were detected, indicating a conductive character induced by high electric field loading. However, saturated P-E loops are observed in Bi-rich samples with well-inhibited conductivity. Furthermore, compared to stoichiometric BNT and nonstoichiometric x = 0.02 Bi-rich samples, (Bi0.5+xNa0.5−3x)TiO3 samples with x = 0.01 exhibit higher electrostrain from 30 °C to 150 °C. Based on the assumption of charge balance, our findings indicated that the presence of 1 mol% excess Bi would facilitate significant improvement in the dielectric, ferroelectric, and electrostrain properties of BNT and BNT-based systems.  相似文献   
3.
Power conversion efficiency (PCE) and stability are two important properties of perovskite solar cells (PSCs). Particularly, defects in the perovskite films could cause the generation of trap states, thereby increasing the nonradiative recombination. To address this issue, suitable dopants can be incorporated to react with non-bonded atoms or surface dangling bonds to passivate the defects. Herein, we introduced TiI4 into CH3NH3PbI3 (MAPbI3) film and obtained a dense and uniform morphology with large crystal grains and low defect density. The champion cell based on 0.5% TiI4-doped MAPbI3 achieved a PCE as high as 20.55%, which is superior to those based on pristine MAPbI3 (17.64%). Moreover, the optimal solar cell showed remarkable stability without encapsulation. It retained 88.03% of its initial PCE after 300 h of storage in ambient. This work demonstrates TiI4 as a new and effective passivator for MAPbI3 film.  相似文献   
4.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
5.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
6.
Face aging (FA) for young faces refers to rendering the aging faces at target age for an individual, generally under 20s, which is an important topic of facial age analysis. Unlike traditional FA for adults, it is challenging to age children with one deep learning-based FA network, since there are deformations of facial shapes and variations of textural details. To alleviate the deficiency, a unified FA framework for young faces is proposed, which consists of two decoupled networks to apply aging image translation. It explicitly models transformations of geometry and appearance using two components: GD-GAN, which simulates the Geometric Deformation using Generative Adversarial Network; TV-GAN, which simulates the Textural Variations guided by the age-related saliency map. Extensive experiments demonstrate that our method has advantages over the state-of-the-art methods in terms of synthesizing visually plausible images for young faces, as well as preserving the personalized features.  相似文献   
7.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
8.
9.
针对云计算应用于无线传感器网络(Wireless Sensor Network,WSN)时延敏感型业务时存在的高传输时延问题,提出了一种WSN低功耗低时延路径式协同计算方法。该方法基于一种云雾网络架构开展研究,该架构利用汇聚节点组成雾计算层;在数据传输过程中基于雾计算层的计算能力分步骤完成任务计算,降低任务处理时延;由于汇聚节点计算能力较弱,时延降低将导致能耗增加,WSN工作寿命减短,为此提出能耗约束下的任务映射策略,并利用离散二进制粒子群优化(Binary Particle Swarm Optimization,BPSO)算法解决能耗约束下的时延优化问题。仿真结果表明,在相同的能耗约束下,对比其他算法,基于BPSO算法得出的映射方案能有效降低业务处理时延,满足时延敏感型业务的需求。  相似文献   
10.
《Ceramics International》2019,45(16):19822-19828
A series of (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBaSnO3 (BNBT-100xBSN, x = 0–20) lead-free ceramics were synthesized using a conventional high-temperature solid-state reaction route. The effects of BaSnO3 on the dielectric, ferroelectric and energy-storage performance of BNBT-BSN were systematically investigated. Temperature dependent permittivity curves indicated the obviously enhanced relaxor ferroelectric property. The introduction of BaSnO3 reduced the temperature corresponding to the first dielectric anomaly, which facilitated the dielectric temperature stability. △ε'/ε'150°C varied no more than 15% within the temperature range of up to 338 °C (45–383 °C) for BNBT-15BSN. A slimed P-E loop was obtained with the remnant polarization of 0.4 μC/cm2 for BNBT-15BSN. Moreover, the breakdown field intensity of BNBT-BSN increased effectively from 80 kV/cm to 115 kV/cm. Therefore, an optimum energy-storage performance was obtained in BNBT-15BSN with the energy-storage density of 1.2 J/cm3 whose energy-storage efficiency reached 86.7%. Furthermore, the possible contributions of defect and vacancy to relaxation and conductance mechanism were discussed by studying the impedance and electric modulus. The results above indicated the BNBT-100xBSN be a promising lead-free candidate for energy-storage capacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号