首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334445篇
  免费   48934篇
  国内免费   23148篇
电工技术   12010篇
技术理论   19篇
综合类   33338篇
化学工业   55664篇
金属工艺   23356篇
机械仪表   18488篇
建筑科学   15634篇
矿业工程   11154篇
能源动力   22152篇
轻工业   21224篇
水利工程   2705篇
石油天然气   4312篇
武器工业   3769篇
无线电   36440篇
一般工业技术   48736篇
冶金工业   11455篇
原子能技术   3136篇
自动化技术   82935篇
  2024年   1054篇
  2023年   12031篇
  2022年   16972篇
  2021年   18711篇
  2020年   19992篇
  2019年   15773篇
  2018年   16071篇
  2017年   18670篇
  2016年   19939篇
  2015年   21032篇
  2014年   27665篇
  2013年   29386篇
  2012年   33402篇
  2011年   31633篇
  2010年   23546篇
  2009年   23662篇
  2008年   14283篇
  2007年   18597篇
  2006年   14799篇
  2005年   6929篇
  2004年   3536篇
  2003年   3630篇
  2002年   3656篇
  2001年   3387篇
  2000年   2340篇
  1999年   2153篇
  1998年   484篇
  1997年   421篇
  1996年   343篇
  1995年   202篇
  1994年   194篇
  1993年   134篇
  1992年   153篇
  1991年   117篇
  1990年   86篇
  1989年   92篇
  1988年   66篇
  1987年   86篇
  1986年   98篇
  1985年   91篇
  1984年   115篇
  1983年   89篇
  1982年   114篇
  1981年   81篇
  1980年   119篇
  1979年   97篇
  1978年   56篇
  1976年   68篇
  1959年   55篇
  1951年   107篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(23):33106-33119
K9 optical glass is one of the typical components in optical systems. However, because of its poor fracture resistance, it is difficult to polish it with ultra-precision and high-efficiency and without any surface damage simultaneously. The emergence of the obliquely axial ultrasonic vibration-assisted polishing (UVAP) method can solve this problem which encounters in polishing efficiency and shape accuracy. However, due to the unclear material removal profile (MRP) mechanism, obliquely axial UVAP is not widely used in the processing field. This paper introduces the obliquely axial UVAP method in research processes, mainly focusing on the fixed point MRP analysis of the obliquely axial UVAP. Based on Hertz's contact theory, polishing pressure, the length of the semi-long axis (LLA) and the length of the semi-short axis (LSA) of the contact area are calculated under ultrasonic vibration conditions. Meanwhile, the relative linear velocity distribution of the oblique polishing tool in the instantaneous contact area is modeled by mathematical geometry method. A novel model of the MRP distribution for obliquely axial UVAP is proposed following the Preston equation. Subsequently, a series of polishing experiments were carried out to verify this model. The results show that the numerical model has good agreement with the experimental results on MRP, LLA, LSA, material removal depth and material removal rate (MRR). In addition, the material removal capability can be significantly improved by larger ultrasonic amplitude and larger oblique angle. This model not only more clearly elucidates the processing mechanism of obliquely axial UVAP, but also provides theoretical support for the polishing of free-form optical lenses.  相似文献   
2.
《Ceramics International》2021,47(19):27479-27486
Threshold switching (TS) devices have evolved as one of the most promising elements in memory circuit due to their important significance in suppressing crosstalk current in the crisscross array structure. However, the issue of high threshold voltage (Vth) and low stability still restricts their potential applications. Herein, the vanadium oxide (VOx) films deposited by the pulsed laser deposition (PLD) method are adopted as the switching layer to construct the TS devices. The TS devices with Pt/VOx/Pt/PI structure exhibit non-polar, electroforming-free, and volatile TS characteristics with an ultralow Vth (+0.48 V/−0.48 V). Besides that, the TS devices also demonstrates high stability, without obviously performance degradations after 350 cycles of endurance measurements. Additionally, the transition mechanism is mainly attributed to the synergistic effect of metal-insulator transition of VO2 and oxygen vacancies. Furthermore, the nonvolatile bipolar resistance switching behaviors can be obtained by changing oxygen pressure during the deposition process for switching films. This work demonstrates that vanadium oxide film is a good candidate as switching layer for applications in the TS devices and opens an avenue for future electronics.  相似文献   
3.
This paper focuses on the configuration design of flexure hinges with a prescribed compliance matrix and preset rotational center position. A new method for the topology optimization of flexure hinges is proposed based on the adaptive spring model and stress constraint. The hinge optimization model is formulated by maximizing the bending displacement with a spring while optimizing the compliance matrix to a prescribed value. To avoid numerical instability, an artificial spring is used as an auxiliary calculation, and a new strategy is developed for adaptively adjusting the spring stiffness according to the prescribed compliance matrix. The maximum stress of flexure hinge is limited by using a normalized P-norm of the effective von Mises stress, and a position constraint of rotational center is proposed to predetermine the position of the rotational center. In addition, to reduce the error of the stress measurement, a simple but effective filtering method is presented to obtain a complete black-and-white design. Numerical examples are used to verify the proposed method. Topology results show that the obtained flexure hinges have the prescribed compliance matrix and preset rotational center position while also meeting the stress requirements.  相似文献   
4.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
5.
6.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
7.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   
8.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
9.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
10.
Sialidosis, caused by a genetic deficiency of the lysosomal sialidase gene (NEU1), is a systemic disease involving various tissues and organs, including the nervous system. Understanding the neurological dysfunction and pathology associated with sialidosis remains a challenge, partially due to the lack of a human model system. In this study, we have generated two types of induced pluripotent stem cells (iPSCs) with sialidosis-specific NEU1G227R and NEU1V275A/R347Q mutations (sialidosis-iPSCs), and further differentiated them into neural precursor cells (iNPCs). Characterization of NEU1G227R- and NEU1V275A/R347Q- mutated iNPCs derived from sialidosis-iPSCs (sialidosis-iNPCs) validated that sialidosis-iNPCs faithfully recapitulate key disease-specific phenotypes, including reduced NEU1 activity and impaired lysosomal and autophagic function. In particular, these cells showed defective differentiation into oligodendrocytes and astrocytes, while their neuronal differentiation was not notably affected. Importantly, we found that the phenotypic defects of sialidosis-iNPCs, such as impaired differentiation capacity, could be effectively rescued by the induction of autophagy with rapamycin. Our results demonstrate the first use of a sialidosis-iNPC model with NEU1G227R- and NEU1V275A/R347Q- mutation(s) to study the neurological defects of sialidosis, particularly those related to a defective autophagy–lysosome pathway, and may help accelerate the development of new drugs and therapeutics to combat sialidosis and other LSDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号