首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
自动化技术   4篇
  2021年   1篇
  2020年   3篇
排序方式: 共有4条查询结果,搜索用时 8 毫秒
1
1.
随着混合异构平台的发展,出现了类型不一的加速设备,如何在混合异构平台中充分利用这些不同类型的设备,以及如何在多个计算设备之间部署深度学习模型,而且训练大型和复杂模型的重要性不断提高.数据并行(DP)是应用最广泛的并行化策略,但是如果数据并行训练中的设备数量不断增加,设备之间的通信开销就会成为瓶颈.此外,每个步骤因设备性能差异处理的批总量不同会导致精度损失,即需要更长的训练周期以收敛到期望的精度.这些因素会影响整体训练时间,并且会影响某些设备的运行效率.除了数据并行(DP),每个训练步骤都可以通过模型并行(M P)来加速.提出了一种适合混合异构平台的模型并行训练优化算法.首先,为解决混合异构平台中设备性能分布不均问题,提出了层级并行和通道并行混合的模型并行划分策略,同时通过合并一些性能偏低的设备来减少流水线的长度和缓解通信压力.然后为了优化设备间的流水效果,通过分析流水线建立时间占比和设备性能利用率对整体训练时间的影响,提出了一种可以使两者达到均衡状态的微批次划分方法.实验表明,通过本文方法优化之后的模型并行流水训练算法比传统的模型并行算法具有更好的加速比,在单一类型设备的异构平台上的训练性能加速比提升4% 左右,在混合异构平台的训练性能加速比要比没有使用优化方法之前提升7% 左右.  相似文献   
2.
神经网络压缩技术的出现缓解了深度神经网络模型在资源受限设备中的应用难题,如移动端或嵌入式设备.但神经网络压缩技术在压缩处理的自动化、稀疏度与硬件部署之间的矛盾、避免压缩后模型重训练等方面存在困难.本文在回顾经典神经网络模型和现有神经网络压缩工具的基础上,总结参数剪枝、参数量化、低秩分解和知识蒸馏四类压缩方法的代表性压缩算法的优缺点,概述压缩方法的评测指标和常用数据集,并分析各种压缩方法在不同任务和硬件资源约束中的性能表现,展望神经网络压缩技术具有前景的研究方向.  相似文献   
3.
强化学习是机器学习领域的研究热点, 是考察智能体与环境的相互作用, 做出序列决策、优化策略并最大化累积回报的过程. 强化学习具有巨大的研究价值和应用潜力, 是实现通用人工智能的关键步骤. 本文综述了强化学习算法与应用的研究进展和发展动态, 首先介绍强化学习的基本原理, 包括马尔可夫决策过程、价值函数、探索-利用问题. 其次, 回顾强化学习经典算法, 包括基于价值函数的强化学习算法、基于策略搜索的强化学习算法、结合价值函数和策略搜索的强化学习算法, 以及综述强化学习前沿研究, 主要介绍多智能体强化学习和元强化学习方向. 最后综述强化学习在游戏对抗、机器人控制、城市交通和商业等领域的成功应用, 以及总结与展望.  相似文献   
4.
随着训练数据规模的增大以及训练模型的日趋复杂,深度神经网络的训练成本越来越高,对计算平台提出了更高的算力需求,模型训练并行化成为增强其应用时效性的迫切需求。近年来基于分布式训练的AI加速器(如FPGA、TPU、AI芯片等)层出不穷,为深度神经网络并行训练提供了硬件基础。为了充分利用各种硬件资源,研究人员需要在集合了多种不同算力、不同硬件架构AI加速器的计算平台上进行神经网络的模型并行训练,因此,如何高效利用各种AI加速器计算资源,并实现训练任务在多种加速器上的负载均衡,一直是研究人员关心的热点问题。提出了一种面向模型并行训练的模型拆分策略自动生成方法,该方法能够基于静态的网络模型自动生成模型拆分策略,实现网络层在不同AI加速器上的任务分配。基于该方法自动生成的模型分配策略,能够高效利用单个计算平台上的所有计算资源,并保证模型训练任务在各设备之间的负载均衡,与目前使用的人工拆分策略相比,具有更高的时效性,节省拆分策略生成时间100倍以上,且降低了由于人为因素带来的不确定性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号