首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
叶青青  孟小峰  朱敏杰  霍峥 《软件学报》2018,29(7):1981-2005
大数据时代信息技术不断发展,个人信息的隐私问题越来越受到关注,如何在数据发布和分析的同时保证其中的个人敏感信息不被泄露是当前面临的重大挑战.中心化差分隐私保护技术建立在可信第三方数据收集者的假设基础上,然而该假设在现实中不一定成立.基于此提出的本地化差分隐私作为一种新的隐私保护模型,具有强隐私保护性,不仅可以抵御具有任意背景知识的攻击者,而且能够防止来自不可信第三方的隐私攻击,对敏感信息提供了更全面的保护.介绍了本地化差分隐私的原理与特性,总结和归纳了该技术的当前研究工作,重点阐述了该技术的研究热点:本地化差分隐私下的频数统计、均值统计以及满足本地化差分隐私的扰动机制设计.在对已有技术深入对比分析的基础上,指出了本地化差分隐私保护技术的未来研究挑战.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号