首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  完全免费   10篇
  自动化技术   29篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
排序方式: 共有29条查询结果,搜索用时 46 毫秒
1.
中文文本的关键词自动抽取和模糊分类   总被引:41,自引:3,他引:38  
本文提出了中文文本分类的两种模糊方法,一种基于模糊集间的语义距离「2」,一种基于本文中提出的‘模糊分类网络’,两者都必须首先从文本中抽取关键词集合,本文给出了一种主要采用统计方法结合受限自然语言理解技术的模糊关键词集合提取方法,它与模糊分类方法结合可望达到文本信息的自动分类。  相似文献
2.
一个基于概念的中文文本分类模型   总被引:16,自引:2,他引:14  
文章提出一个电子文档的自动分类的模型:基于《知网》之上,经过对文档的关键词的抽取和排歧,进而得到关键词的概念,再对关键词的概念进行综合而得到该文本所属的类别,实验证明该模型有较好的效果。  相似文献
3.
中文文本分类中的特征选择研究   总被引:14,自引:0,他引:14  
有多种特征选择算法被用于文本自动分类,YimingYang教授曾针对英文文本分类中的特征选择做过深入的研究,并得出结论:IG和CHI方法效果相对较好.考虑到该结论不一定适合对中文文本的分类,对中文文本分类中的特征选择方法进行研究,采用了包含500篇新闻的中文语料库对几种特征选择算法进行测试,结果表明:在测试的特征选择算法中,χ2估计方法无需因训练集的改变而人为调节特征阀值,并且分类准确率较高.  相似文献
4.
结合类频率的关联中文文本分类   总被引:8,自引:2,他引:6  
该文提出一种词类频率和关联中文文本分类相结合的算法ARCTC.此算法将文档视作适词视作项,并针对文本事务的特性,提出利用词的类频率筛选与分类相关性不大的词汇,然后将改进的关联规则挖掘算法用于挖掘项和类别间的相关关系.挖掘出的规则用于形成类别特征词的集合,可用来和类标号未知文档的词的集合求交集,交集元素个数最多者即为所分类别.实验证明,该算法在提高训练时间和测试时间的同时具有较好的召回率、准确率和F-Measure.  相似文献
5.
基于关联规则挖掘的中文文本自动分类   总被引:7,自引:0,他引:7  
随着电子出版物和互联网文档的飞速增加,自动文档分类工作正变得日渐重要.提出一种基于关联规则的中文文本自动分类方法.该算法将文档视作事务.关键词视作项,利用改进的关联规则挖掘算法挖掘项和类剐间的相关关系.挖掘出的规则形成分类器,可用于类标号未知的文档的区分.实验证明,该算法能较快地获得可理解的规则并且具有较好的召回率和准确率.  相似文献
6.
中文文本分类器的设计   总被引:5,自引:0,他引:5  
本文分类是指在给定分类体系下,根据文本的内容自动确定文本类型的过程。文章应用球形的k-均值算法确定每个文本的类标签,并通过Boosting算法构建分类器。构建的分类器具有以下特点:分类器的设计针对未知类标签的语料库,实用性好;分类器能随着语料库中文本的变化而增加新的类,具有很好的可扩展性;分类器基于Boosting算法,具有很好的分类精度。  相似文献
7.
一种应用向量聚合技术的KNN中文文本分类方法   总被引:4,自引:2,他引:2  
针对KNN文本分类方法中不考虑特征词关联的问题,提出一种改进方法.这种方法基于对体现词和类别问相关程度的CHI统计值分布的分析,应用向量聚合技术很好地解决了关联特征词的提取问题.其特点在于:聚合文本向量中相关联的特征词作为特征项,从而取代传统方法中一个特征词对应向量一维的做法,这样不但缩减了向量的维教,而且加强了特征项对文本分类的贡献.实验表明该方法明显提高了分类的准确率和召回率。  相似文献
8.
本文提出了一个基于n-gram语言模型进行文本表示,采用链状朴素贝叶斯分类器进行分类的中文文本分类系统。介绍了如何用n-gram语言模型进行文本表示,阐述了链状朴素贝叶斯分类器与n-gram语言模型相结合的优势,分析了n-gram语言模型参数的选取,讨论了分类系统的若干重要问题,研究了训练集的规模和质量对分类系统的影响。根据863计划文本分类测评组所提供的测试标准、训练集以及测试集对本文所设计的分类系统进行测试,实验结果表明该分类系统有良好的分类效果。  相似文献
9.
Bagging算法在中文文本分类中的应用   总被引:3,自引:1,他引:2       下载免费PDF全文
Bagging算法是目前一种流行的集成学习算法,采用一种改进的Bagging算法Attribute Bagging作为分类算法,通过属性重取样获取多个训练集,以kNN为弱分类器设计一种中文文本分类器。实验结果表明Attribute Bagging算法较Bagging算法有更好的分类精度。  相似文献
10.
一种基于中心文档的KNN中文文本分类算法   总被引:3,自引:0,他引:3       下载免费PDF全文
在浩瀚的数据资源中,为了实现对特定主题的搜索或提取,文本自动分类技术已经成为目前研究的热点。KNN是一种重要的文本自动分类方法,KNN能够处理大规模数据,且具有较高的稳定性,但面临分类速度较慢的问题。以KNN方法为基础,引入特征项间的语义关系,并根据语义关系进行聚类生成中心文档,减少了KNN要搜索的文档数,提高了分类速度。仿真实验表明,该算法在不损失分类精度的情况下,显著提高了分类的速度。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号