首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  完全免费   5篇
  自动化技术   15篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
排序方式: 共有15条查询结果,搜索用时 218 毫秒
1.
基于Boosting RBF神经网络的人体行为识别   总被引:2,自引:0,他引:2       下载免费PDF全文
提出一种基于BoostingRBF神经网络的人体行为识别方法,该方法利用规范化的运动历史图像(MHI)进行图像序列表示,从中提取Zernike矩的统计描述特征,然后提出Adaboost算法自适应地选择图像序列的特征作为RBF神经网络的输入,为了进一步提高神经网络的泛化能力,采用一种调整权值分布,限制权重扩张的改进的Boosting方法,分类器以加权投票方式进行分类决策。实验结果表明,提出的方法能够有效地识别人体运动类别。  相似文献
2.
人体行为识别的Markov随机游走半监督学习方法   总被引:1,自引:0,他引:1  
针对目前人体行为识别方法大都需要大量有标注样本的问题,提出一种基于Markov随机游走的半监督人体行为识别算法.首先提取序列图像各帧人体区域的网格统计特征,再采用基于对手惩罚策略的竞争神经网络对其进行聚类和编码,将图像序列表示的人体行为变换为符号序列;然后根据行为之间的归一化编辑距离建立已标注行为、未标注行为和类别之间的Markov链,并采用Markov随机游走过程来预测未标注行为的类别;最后采用最大后验概率准则对观测到的未知行为进行分类.对Weizmann数据集中人体行为的识别实验结果表明,该方法是一种有效的人体行为识别方法,在标注样本很少的情况下平均识别精度可以超过80%.  相似文献
3.
为保留多特征的鉴别能力和区分能力,同时不增加特征维度,提出了一种基于归一化R变换分层模型的人体行为识别方法.第一层选取描述了运动发生区域的运动能量图像(MEI)作为特征,并依据其归一化R变换曲线对行为进行大类划分;第二层利用细节特征更丰富的关键姿态的星状模型以及宽比和高比特征对各大类进行细分,实现行为的分治识别.对Weizmann和ViHaSi人体行为数据库进行实验,识别率分别为92.47%和96.67%.实验结果表明,该分层模型简单有效  相似文献
4.
提出一种新的人体行为识别特征提取方法。针对Radon变换对缩放敏感的问题,采用改进的Radon变换提取运动人体区域最小外接矩形的Radon变换特征,并采用隐马尔可夫模型进行行为识别。该方法提取特征时不再需要进行规范化处理,提高了特征的鲁棒性。实验结果表明,该方法对噪声不敏感、计算简单、识别效率高。  相似文献
5.
人体行为识别是现代计算机人机交互工程的高级形式,本质上是对人体行为信息的一种计算机采集和分类识别系统,在这一系统运行过程中系统对人体行为信息的准确采集和精确识别是实现其功能的关键,本文将立足于人体行为识别的实际,在canny算子和神经网络的基础上对人体行为识别模型进行简要分析。  相似文献
6.
《机器人》2014,(3)
为了提高机器人服务的主动性与智能性,使用Kinect体感设备获取人体的关节点数据解决人体行为识别问题.首先,利用Kinect采集人体关节点坐标,构造用于表示人体结构的3维空间向量,然后计算结构向量之间的角度和向量模的比值,进行人体姿态描述,同时以一段时间内连续的姿态序列作为行为表示特征量,最后选用动态时间规整(DTW)算法计算测试行为模板与参考行为模板之间的相似度以实现行为识别.实验结果表明,选用的行为表示特征量具有旋转与平移不变性.另外,对人在日常生活中的6种行为进行了识别实验,结果表明本文的行为识别算法可以取得较好的识别效果.  相似文献
7.
研究人行为识别的正确性,针对提高对人体行为序列图像进行识别的能力,隐马尔科夫模型(HMM)是一种统计分析模型,具有时序模式分析能力.为了增加图像信息的有效性,提出了一种傅里叶与隐马尔科夫模型相结合的方法人体行为识别方法.通过获得各种人体行为的二值图像序列,对待识别的序列图像提取具有旋转、平移和尺度不变性的傅立叶特征,采用了一种基于中心距的傅里叶描述子,利用改进的隐马尔科夫模型对提取的特征向量进行分类,得到人体行为的识别结果.试验结果表明,系统的识别率与HMM的状态数和观察值数有关,方法是有效且可行的,设计适当的HMM分类器能使系统的识别率达到90%以上,实际应用效果满足要求.  相似文献
8.
唐超  王文剑  李伟  李国斌  曹峰 《软件学报》2015,26(11):2939-2950
人体行为识别是计算机视觉研究的热点问题,现有的行为识别方法都是基于监督学习框架.为了取得较好的识别效果,通常需要大量的有标记样本来建模.然而,获取有标记样本是一个费时又费力的工作.为了解决这个问题,对半监督学习中的协同训练算法进行改进,提出了一种基于多学习器协同训练模型的人体行为识别方法.这是一种基于半监督学习框架的识别算法.该方法首先通过基于Q统计量的学习器差异性度量选择算法来挑取出协同训练中基学习器集,在协同训练过程中,这些基学习器集对未标记样本进行标记;然后,采用了基于分类器成员委员会的标记近邻置信度计算公式来评估未标记样本的置信度,选取一定比例置信度较高的未标记样本加入到已标记的训练样本集并更新学习器来提升模型的泛化能力.为了评估算法的有效性,采用混合特征来表征人体行为,从而可以快速完成识别过程.实验结果表明,所提出的基于半监督学习的行为识别系统可以有效地辨识视频中的人体动作.  相似文献
9.
目的 基于3维骨架的行为识别研究在计算机视觉领域一直是非常活跃的主题,在监控、视频游戏、机器人、人机交互、医疗保健等领域已取得了非常多的成果。现今的行为识别算法大多选择固定关节点作为坐标中心,导致动作识别率较低,为解决动作行为识别中识别精度低的问题,提出一种自适应骨骼中心的人体行为识别的算法。方法 该算法首先从骨骼数据集中获取三维骨架序列,并对其进行预处理,得到动作的原始坐标矩阵;再根据原始坐标矩阵提取特征,依据特征值的变化自适应地选择坐标中心,重新对原始坐标矩阵进行归一化;最后通过动态时间规划方法对动作坐标矩阵进行降噪处理,借助傅里叶时间金字塔表示的方法减少动作坐标矩阵时间错位和噪声问题,再使用支持向量机对动作坐标矩阵进行分类。论文使用国际上通用的数据集UTKinect-Action和MSRAction3D对算法进行验证。结果 结果表明,在UTKinect-Action数据集上,该算法的行为识别率比HO3D J2算法高4.28%,比CRF算法高3.48%。在MSRAction3D数据集上,该算法比HOJ3D算法高9.57%,比Profile HMM算法高2.07%,比Eigenjoints算法高6.17%。结论 本文针对现今行为识别算法的识别率低问题,探究出问题的原因是采用了固定关节坐标中心,提出了自适应骨骼中心的行为识别算法。经仿真验证,该算法能有效提高人体行为识别的精度。  相似文献
10.
季冲  王胜  陆建峰 《计算机科学》2017,44(7):270-274
人体行为识别是计算机视觉中的一个重要研究领域,具有广阔的应用前景。研究了基于Fisher鉴别的字典学习方法在人体行为识别上的应用。首先对人体行为的视频序列提取了局部时空特征,并通过随机投影法降维;然后把降维后的特征作为待分类的信号进行Fisher鉴别字典学习,从而增强字典和编码系数的鉴别能力;最后同时利用重构误差和稀疏表示系数进行分类。实验结果验证了所提方法在人体行为识别上的有效性与鲁棒性。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号