首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  国内免费   16篇
  完全免费   89篇
  自动化技术   204篇
  2020年   4篇
  2019年   6篇
  2018年   12篇
  2017年   12篇
  2016年   12篇
  2015年   40篇
  2014年   42篇
  2013年   29篇
  2012年   28篇
  2011年   15篇
  2010年   3篇
  2009年   1篇
排序方式: 共有204条查询结果,搜索用时 62 毫秒
1.
基于boltzmann选择策略的人工蜂群算法   总被引:12,自引:4,他引:8       下载免费PDF全文
人工蜂群算法(ABC)是一种基于蜜蜂行为的优化算法。基于Boltzmann选择机制提出了一种改进的人工蜂群算法(BABC)用来优化多变量函数。BABC算法使初始群体均匀化;采用Boltzmann选择机制来代替轮盘赌以防止算法过早收敛。经过实验证明,该算法具有全局搜索能力好,收敛速度快,参数设置少等优点。  相似文献
2.
一种双种群差分蜂群算法   总被引:10,自引:0,他引:10       下载免费PDF全文
人工蜂群算法(ABC)是一种基于蜜蜂群智能搜索行为的随机优化算法.为了有效改善人工蜂群算法的性能,结合差分进化算法,提出一种新的双种群差分蜂群算法(BDABC).该算法首先通过基于反向学习的策略初始化种群,使得初始化的个体尽可能均匀分布在搜索空间,然后将种群中的个体随机分成两组,每组采用不同的优化策略同时进行寻优,并通过在两群体之间引入交互学习的思想,来提高算法的收敛速度.基于6个标准测试函数的仿真实验表明,BDABC算法能有效避免早熟收敛,全局优化能力和收敛速率都有显著提高.  相似文献
3.
自适应搜索空间的混沌蜂群算法   总被引:8,自引:3,他引:5       下载免费PDF全文
针对人工蜂群(ABC)算法的不足,以种群收敛程度为依据,结合混沌优化的思想,提出一种改进的人工蜂群算法—自适应搜索空间的混沌蜂群算法(SA-CABC)。其基本思想是在原搜索区域的基础上,根据每次寻优的结果自适应地调整搜索空间,逐步缩小搜索区域,并利用混沌变量的内在随机性和遍历性跳出局部最优点,最终获得最优解。基于六个标准测试函数的仿真结果表明, 本算法能有效地加快收敛速度,提高最优解的精度, 其性能明显优于基本ABC算法,尤其适合高维的复杂函数的寻优。  相似文献
4.
蜂群算法研究综述*   总被引:6,自引:1,他引:5       下载免费PDF全文
蜂群算法是一种模仿蜜蜂繁殖、采蜜等行为的新兴的群智能优化技术,近几年备受研究者关注。初步探讨了蜂群算法的理论基础,详细论述了基于蜜蜂繁殖行为和采蜜行为的两类蜂群算法的生物学机理及其最常见算法的应用研究情况,并分析比较了遗传算法、蚁群算法、粒子群算法和蜂群算法的优缺点、适用范围及性能。最后,总结了现有蜂群算法存在的问题,并指出其未来的研究方向。  相似文献
5.
具有混沌差分进化搜索的人工蜂群算法   总被引:3,自引:1,他引:2       下载免费PDF全文
针对人工蜂群算法的不足,结合差分进化算法中的变异思想,提出一种改进的人工蜂群算法。其基本思想是在标准人工蜂群算法中观察蜂更新蜜源的阶段,使用差分进化算子对蜜源进行更新,在差分变异算子中引入混沌序列,以提高观察蜂在此阶段的局部搜索能力,最终获得最优蜜源。仿真结果表明,引入混沌差分进化搜索的蜂群算法无论在解的求解精度上还是算法的收敛速度上均优于标准人工蜂群算法,适合于复杂函数的全局优化问题。  相似文献
6.
基于轮盘赌反向选择机制的蜂群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对人工蜂群算法易陷入局部最优的不足,考虑到基本蜂群算法中个体选择大多基于贪婪选择的思想,从而使算法快速向适应度值高的个体进化而陷入局部停滞。为此,提出一种基于轮盘赌的反向选择机制,以保持蜂群个体的多样性而使算法保持较好进化能力。通过对经典测试函数的仿真实验表明,改进的蜂群算法有更快的收敛速度和更好的收敛精度,且改进的蜂群算法对群体规模有很强的鲁棒性。  相似文献
7.
基于人工蜂群算法的无人机航迹规划研究   总被引:2,自引:0,他引:2  
为求解航迹规划问题,引入人工蜂群(ABC)算法,并将航迹空间以网格划分,通过固定起始节点和设定最大允许航迹节点数等方法,解决了ABC算法应用于航迹规划的2个难题:航迹节点不固定和邻域构造困难,实现了将ABC算法应用于航迹规划问题.通过典型的实例仿真对算法性能进行测试,并与其他智能优化算法进行比较,结果表明:该算法不仅增加了解的多样性,有效克服了停滞行为的过早出现,而且能够加快收敛速度,得到全局最优解或近似解,是解决航迹规划和其他组合优化问题的一种有效算法.  相似文献
8.
云计算环境下基于 ABC-QPSO 算法的资源调度模型   总被引:2,自引:0,他引:2  
为了提高云计算资源的利用率,保证节点负载均衡,提出一种人工蜂群算法和量子粒子群算法相融合的云计算资源调度模型( ABC-QPSO). 首先将人工蜂群算法的搜索算子作为变异算子引入到量子粒子群算法中,以解决量子粒子群算法早熟收敛缺陷,然后以任务完成时间最短作为量子粒子群的适应度函数对云计算资源调度进行优化,最后在CloudSim 平台上对ABC-QPSO的性能进行测试. 结果表明,ABC-QPSO算法不仅克服了QPSO算法的不足,而且有效缩短了任务的完成时间,提高了云计算资源利用率,适合于进行大规模任务的云计算资源调度.  相似文献
9.
基于Memetic框架的混沌人工蜂群算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对无约束优化问题,提出一种新颖的混沌人工蜂群算法。新算法在Memetic算法框架的基础上,采用人工蜂群算法作为全局搜索算法,采用混沌搜索算子作为局部搜索算法。为了进一步提升算法的开采能力,新算法的侦察蜂抛弃了随机生成新食物源的方法,采用针对陷入局部极值食物源进行混沌局部搜索生成候选食物源的方式。针对五个标准Benchmark函数的仿真实验结果显示,与标准人工蜂群算法相比,新算法求解精度具有一定优势。  相似文献
10.
改进的人工蜂群算法在函数优化问题中的应用   总被引:2,自引:0,他引:2  
人工蜂群算法是近年来新提出的一种优化算法。针对标准人工蜂群算法的局部搜索能力差,精度低的缺点,提出了一个改进的人工蜂群算法,利用全局最优解和个体极值的信息来改进人工蜂群算法中的搜索模式,并引入异步变化学习因子,保持全局搜索和局部搜索的平衡。将改进的人工蜂群算法在函数优化问题上进行测试,结果表明改进的人工蜂群算法优于原算法。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号