首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  国内免费   1篇
  完全免费   16篇
  自动化技术   29篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   2篇
排序方式: 共有29条查询结果,搜索用时 46 毫秒
1.
不平衡分类问题研究综述   总被引:11,自引:0,他引:11  
实际的分类问题往往都是不平衡分类问题,采用传统的分类方法,难以得到满意的分类效果。为此,十多年来,人们相继提出了各种解决方案。对国内外不平衡分类问题的研究做了比较详细地综述,讨论了数据不平衡性引发的问题,介绍了目前几种主要的解决方案。通过仿真实验,比较了具有代表性的重采样法、代价敏感学习、训练集划分以及分类器集成在3个实际的不平衡数据集上的分类性能,发现训练集划分和分类器集成方法能较好地处理不平衡数据集,给出了针对不平衡分类问题的分类器评测指标和将来的工作。  相似文献
2.
不平衡类数据挖掘研究综述   总被引:7,自引:3,他引:4       下载免费PDF全文
翟云  杨炳儒  曲武 《计算机科学》2010,37(10):27-32
综述了近年来国内外对不平衡类数据挖掘的主要研究进展。首先分析了不平衡类数据挖掘的本质。其次,详细探讨了处理不平衡类数据挖掘的各种技术,并根据其本质区别,从数据层次和算法层次分别对目前存在的各种技术方法进行了深入剖析和全面比较。最后,指出当前不平衡类数据挖掘研究的热点以及将来需要重点关注的主要问题。  相似文献
3.
代价敏感分类器的比较研究   总被引:5,自引:1,他引:4  
简要地回顾了代价敏感学习的理论和现有的代价敏感学习算法.将代价敏感学习算法分为两类,分别是直接代价敏感学习和代价敏感元学习,其中代价敏感元学习可以将代价不敏感的分类器转换为代价敏感的分类器.提出了一种简单、通用、有效的元学习算法,称为经验阈值调整算法(简称ETA).评估了各种代价敏感元学习算法和ETA的性能.ETA几乎总是得到最低的误分类代价,而且它对误分类代价率最不敏感.还得到了一些关于元学习的其它有用结论.  相似文献
4.
多分类问题代价敏感AdaBoost算法   总被引:5,自引:2,他引:3       下载免费PDF全文
付忠良 《自动化学报》2011,37(8):973-983
针对目前多分类代价敏感分类问题在转换成二分类代价敏感分类问题存在的代价合并问题, 研究并构造出了可直接应用于多分类问题的代价敏感AdaBoost算法.算法具有与连续AdaBoost算法 类似的流程和误差估计. 当代价完全相等时, 该算法就变成了一种新的多分类的连续AdaBoost算法, 算法能够确保训练错误率随着训练的分类器的个数增加而降低, 但不直接要求各个分类器相互独立条件, 或者说独立性条件可以通过算法规则来保证, 但现有多分类连续AdaBoost算法的推导必须要求各个分类器相互独立. 实验数据表明, 算法可以真正实现分类结果偏向错分代价较小的类, 特别当每一类被错分成其他类的代价不平衡但平均代价相等时, 目前已有的多分类代价敏感学习算法会失效, 但新方法仍然能 实现最小的错分代价. 研究方法为进一步研究集成学习算法提供了一种新的思路, 得到了一种易操作并近似满足分类错误率最小的多标签分类问题的AdaBoost算法.  相似文献
5.
基于集成的年龄估计方法   总被引:3,自引:0,他引:3       下载免费PDF全文
张宇  ZHOU Zhi-Hua 《自动化学报》2008,34(8):997-1000
近十年来, 由于广泛的应用前景, 关于人脸识别的研究得到了广泛的关注. 但目前有一种影响人脸识别技术的因素尚未被研究者所重视, 那就是年龄变化. 而在适用于年龄变化的人脸识别技术中有一个重要的问题, 即年龄估计. 本文基于典型相关分析和代价敏感学习提出了两种年龄估计算法, 并在此基础上利用集成技术来提高年龄估计的准确性. 最终实验结果验证了本文方法的有效性.  相似文献
6.
代价敏感概率神经网络及其在故障诊断中的应用   总被引:2,自引:1,他引:1  
针对传统的分类算法人多以误分率最小化为目标,忽略了误分类型之间的差别和数据集的非平衡性的问题,提出代价敏感概率神经网络算法.该算法将代价敏感机制引入概率神经网络,用期望代价取代误分率,以期望代价最小化为目标,基于期望代价最小的贝叶斯决策规则预测新样本类别.采用工业现场数据和数据集German Credit验证了该算法的有效性.实验结果表明,该算法具有故障识别率高、泛化能力强、建模时间短等特点.  相似文献
7.
非平衡类数据分类概述   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对非平衡类数据分类问题进行了概述。首先在简单介绍非平衡类数据基本概念的基础上,分析了非平衡类数据引起的问题及其导致分类性能下降的原因;然后介绍了目前主要的解决方法,分析了现有处理方法的优缺点;最后讨论了未来的研究方向。  相似文献
8.
用于不均衡数据集的挖掘方法   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的分类算法大多是基于数据集中各类的样本数是基本均衡的假设的,而实际应用场合中面临的往往是不均衡数据。针对不均衡数据集,利用传统的分类方法往往不能获得良好的性能,因而研究用于处理不均衡数据集的分类方法就显得相当重要,本文对相关的研究做了综述。  相似文献
9.
不平衡多分类问题的连续AdaBoost算法研究   总被引:1,自引:0,他引:1  
现有AdaBoost系列算法一般没有考虑类的先验分布.针对该问题,基于最小化训练错误率,通过把符号函数表示的训练错误率的极值问题转变成一种指数函数的极值问题,提出了不平衡分类问题连续AdaBoost算法,给出了该算法的近似误差估计.基于同样的方法,对二分类问题连续AdaBoost算法的合理性给出了一种全新的解释和证明,并推广到多分类问题,得到了多分类问题连续AdaBoost算法,其具有与二分类连续AdaBoost算法完全类似的算法流程.经分析该算法与Bayes统计推断方法等价,并且其训练错误率随着训练的分类器个数增加而减小.理论分析和基于UCI数据集的实验结果表明了不平衡多分类算法的有效性.在连续AdaBoost算法中,不平衡分类问题常被转换成平衡分类问题来处理,但当先验分布极度不平衡时,使用提出的不平衡分类问题连续AdaBoost算法比一般连续AdaBoost算法有更好效果.  相似文献
10.
非对称AdaBoost算法及其在目标检测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
葛俊锋  罗予频 《自动化学报》2009,35(11):1403-1409
针对目标检测中的非对称分类问题,在分析现有的由离散AdaBoost算法扩展得到的代价敏感(即非对称)学习算法的基础上,提出了以三个不同的非对称错误率上界为核心的推导非对称AdaBoost算法的统一框架. 在该框架下, 不仅现有离散型非对称AdaBoost算法之间的关系非常清晰, 而且其中不符合理论推导的部分可以很容易得到修正. 同时, 利用不同的优化方法, 最小化这三个不同上界, 推出了连续型AdaBoost算法的非对称扩展(用Asym-Real AdaBoost和Asym-Gentle AdaBoost 表示). 新的算法不仅在弱分类器组合系数的计算上比现有离散型算法更加方便, 而且实验证明, 在人脸检测和行人检测两方面都获得了比传统对称AdaBoost算法和离散型非对称AdaBoost算法更好的性能.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号