首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   1篇
  完全免费   1篇
  自动化技术   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
目的 肾脏图像分割对于肾脏疾病的诊断有着重要意义,临床上通过测量肾皮质的体积和厚度可判断肾脏是否有肿瘤、慢性动脉硬化性肾病和肾移植急性排斥反应等。现有的肾脏分割算法大多针对一种模态,且只能分割出肾脏整体。本文提出一种基于全卷积网络和GrowCut的肾皮质自动分割算法,用于多模态肾脏图像分割。方法 首先用广义霍夫变换对肾脏进行检测,提取出感兴趣区域,通过数据增强扩充带标签数据;然后用VGG-16预训练模型进行迁移学习,构建适用于肾皮质分割的全卷积网络,设置网络训练参数,使用扩充数据训练网络。最后用全卷积网络分割图像,提取最后一层卷积层的特征图得到种子点标记,结合肾脏图像的先验知识纠正错误种子点,将该标记图作为GrowCut初始种子点可实现肾皮质准确分割。结果 实验数据为30组临床CT和MRI图像,其中一组有标记的CT图像用于训练网络并测试算法分割准确性,该文算法分割准确率IU(region intersection over union)和DSC(Dice similarity coefficient)分别达到91.06%±2.34%和91.79%±2.39%。与全卷积网络FCN-32s相比,本文提出的网络参数减少,准确率更高,可实现肾皮质分割。GrowCut算法考虑像素间的邻域信息,与全卷积网络结合可进一步将分割准确率提高3%。结论 该方法可准确分割多模态肾脏图像,包括正常和变异肾脏的图像,说明该方法优于主流方法,能够为临床诊断提供可靠依据。  相似文献
2.
针对漫水填充结合模板匹配的双面联合分割方法对小麦图像进行分割存在过分割以及欠分割现象,提出基于改进的全卷积网络的图像语义分割方法.该方法融入前二个池化层的输出信息作为Softmax层的输入,探讨并得出了只融入第二个池化层的输出信息的网络模型优于同时融入前两个池化层的网络模型,引入Batch Normalization层到网络层中,并且针对小麦图像的需要将原来的21类网络输出类别更换为2类输出.实验采用建立的小麦图像数据库,结果表明改进后的网络使得过分割和欠分割现象明显减少,分割效果得到了显著提升,并且使用F-measure定量分析了模型的有效性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号