首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   2篇
  自动化技术   3篇
  2015年   1篇
  2014年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
智能规划中基于遗传算法的动作模型学习   总被引:3,自引:0,他引:3  
在动作间的状态未知条件下,利用遗传算法,从不完整的领域描述和规划实例中学习动作模型,并且设计了AMLS-GA(Action Model Learning System Based on Genetic Algorithm)系统来具体实现这一思想.作者为每一个动作构建一个可能谓词集,这个谓词集覆盖了动作前提表、增加表和删除表中的所有谓词.采用二进制编码的方式,把动作模型编码成GA搜索空间中的一个假设,学习过程是在标准的遗传算法框架下进行的.把学习结果的正确性定义为尽可能多的解释规划实例,并且通过实验的方法对比学习到的模型与专家预定义模型之间的差别.实验结果表明,算法能在较短的时间内,学习到一个逼近专家描述的动作模型.  相似文献
2.
刘振  张志政 《计算机科学》2015,42(1):220-226
动作模型学习可以使Agent主动适应动态环境中的变化,从而提高Agent的自治性,同时也可为动态域建模提供一个初步模型,为后期的模型完善和修改提供了基础.通过结合归纳逻辑程序设计(Inductive Logic Program-ming,ILP)和回答集程序设计(Answer Set Programming,ASP),设计了一个学习B语言描述的动作模型算法,该算法可以在混合规模的动态域中进行学习,并采用经典规划实例验证了该学习算法的有效性.  相似文献
3.
近年来,动作模型学习引起了研究人员的极大兴趣.可是,尽管不确定规划已经研究了十几年,动作模型学习的研究仍然集中于经典的确定性动作模型上.提出了在部分观测环境下学习不确定动作模型的算法,该算法可应用于假定人们对转移系统一无所知的情形下进行,输入只有动作-观测序列.在现实世界中,这样的场景很常见.致力于动作是由简单逻辑结构组成的、且观测以一定频率出现的一类问题的研究.学习过程分为3个步骤:首先,计算命题在状态中成立的概率;然后,将命题抽取成效果模式,再抽取前提;最后,对效果模式进行聚类以去除冗余.在基准领域上进行的实验结果表明,动作模型学习技术可推广到不确定的部分观测环境中.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号