首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  国内免费   40篇
  完全免费   31篇
  自动化技术   124篇
  2018年   27篇
  2017年   58篇
  2016年   20篇
  2015年   8篇
  2014年   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有124条查询结果,搜索用时 46 毫秒
1.
深度卷积神经网络的显著性检测   总被引:3,自引:3,他引:0       下载免费PDF全文
目的 显著性检测问题是近年来的研究热点之一,针对许多传统方法都存在着特征学习不足和鲁棒检测效果不好等问题,提出一种新的基于深度卷积神经网络的显著性检测模型.方法 首先,利用超像素的方法聚类相似特征的像素点,仿人脑视皮层细胞提取目标边缘,得到区域和边缘特征.然后,通过深度卷积神经网络学习图像的区域与边缘特征,获取相应的目标检测显著度置信图.最后,将深度卷积神经网络输出的置信度融入到条件随机场,求取能量最小化,实现显著性与非显著性判别,完成显著性检测任务.结果 在两个常用的视觉检测数据库上进行实验,本文算法的检测精度与当前最好的方法相比,在MSAR数据库上检测精度相对提升大约1.5%,在Berkeley数据库上提升效果更加明显,达到了5%.此外,无论是自然场景还是人工建筑场景、大目标与小目标,检测的效果都是最好的.结论 本文融合多特征的深度学习方法与单一浅层人工特征的方法相比更有优势,它避免了手工标定特征所带来的不确定性,具有更好的鲁棒性与普适性,从主观视觉愉悦度和客观检测准确度两方面说明了算法的有效性.  相似文献
2.
深度学习研究进展   总被引:3,自引:3,他引:0  
深度学习(Deep Learning)是一个近几年备受关注的研究领域,在机器学习中起着重要的作用.如果说浅层学习是机器学习的一次浪潮,那么深度学习作为机器学习的一个新领域,将掀起机器学习的又一次浪潮.深度学习通过建立、模拟人脑的分层结构来实现对外部输入的数据进行从低级到高级的特征提取,从而能够解释外部数据.首先介绍了深度学习的由来,分析了浅层学习存在的弊端;其次列举了深度学习的经典方法,主要以监督学习和无监督学习来展开介绍;然后对深度学习的最新研究进展及其应用进行了综述;最后总结了深度学习发展所面临的问题.  相似文献
3.
利用双通道卷积神经网络的图像超分辨率算法   总被引:2,自引:2,他引:0       下载免费PDF全文
目的 图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法 首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果 本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 dB与29.17 dB的效果。结论 本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。  相似文献
4.
深度学习研究综述   总被引:1,自引:1,他引:9  
深度学习是一类新兴的多层神经网络学习算法,因其缓解了传统训练算法的局部最小性,引起机器学习领域的广泛关注。首先论述了深度学习兴起渊源,分析了算法的优越性,并介绍了主流学习算法及应用现状,最后总结了当前存在的问题及发展方向。  相似文献
5.
不同池化模型的卷积神经网络学习性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方法 构建卷积神经网络模型,使用不同的池化模型对网络进行训练,并检验在不同迭代次数下的学习结果。在现有算法准确率不高和收敛速度较慢的情况下,通过使用不同的池化模型对网络进行训练,从而构建一种新的动态自适应池化模型,并研究在不同迭代次数下其对识别准确率和收敛速度的影响。结果 通过对比实验发现,使用动态自适应池化算法的卷积神经网络学习性能最优,在手写数字集上的收敛速度最高可以提升18.55%,而模型对图像的误识率最多可以降低20%。结论 动态自适应池化算法不但使卷积神经网络对特征的提取更加精确,而且很大程度地提高了收敛速度和模型准确率,从而达到优化网络学习性能的目的。这种模型可以进一步拓展到其他与卷积神经网络相关的深度学习算法。  相似文献
6.
基于分流抑制机制的卷积神经网络人脸检测法   总被引:1,自引:1,他引:1  
提出了一种基于分流抑制机制的卷积神经网络(SICNN)的人脸检测方法.该方法具有结构简单、训练参数少和适应性强等优点.待测图像经过具有分流抑制机制的神经元处理以后,特征信息进一步增强.该方法的人脸检测器可以检测出具有不同表情、姿态、尺寸和背景的图像中的人脸位置,并达到较高的检测率、较快的检测速度和低的错误警报数.  相似文献
7.
复杂背景下车辆牌照的快速识别主要包括字符的定位、提取与识别.本文针时在复杂背景下如何快速定位并提取字符、如何提高字符识别率的问题,阐述了在复杂背景车牌字符识别系统中,Niblack(二值化)与SVM相结合的方法和卷积神经网络的具体应用.试验结果表明,在对复杂背景图片中的车牌与集装箱箱体字符进行识别时,该系统准确率分别到达92%与89%,单次所需时间为1秒(CPU 1.66GHZ).本文方法直接对字符定位,克服了传统方法只能针对车牌字符进行识别的局限性,优于其他识别方法.  相似文献
8.
张佳康  陈庆奎 《计算机工程》2010,36(15):179-181
针对具有高浮点运算能力的流处理器设备GPU对神经网络的适用性问题,提出卷积神经网络的并行化识别算法,采用计算统一设备架构(CUDA)技术,并定义其上的并行化数据结构,描述计算任务到CUDA的映射机制。实验结果证明,在GTX200硬件架构的GPU上实现的并行识别算法的平均浮点运算能力峰值较CPU上串行算法提高了近60倍,更适用于神经网络的相关应用。  相似文献
9.
介绍了中国车牌识别的研究背景和现状,提出了一种基于神经网络的新方法,并设计了一种没有直接预处理的车牌像素图像的卷积神经网络结构。该图像变换适用于利用原始车牌来增加训练数据库。实验结果验证了本车牌识别方法的鲁棒性和有无车牌的识别效率。  相似文献
10.
验证码在维护互联网安全、防止机器恶意攻击做出了很大贡献。但通过现有的模式识别技术仍然可以破解部分验证码。着重于有粘连字符的猫扑和西祠胡同网站验证码进行识别,难点在于分割图片中的粘连字符。对字符是模糊粘连的猫扑验证码,提出了基于局部极小值和最小投影值的方法来分割;对有交错粘连的西祠胡同验证码,通过颜色聚类与竖直投影结合来达到分割字符的目的。最终均采用卷积神经网络进行训练和识别,达到了较高的识别率。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号