首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  国内免费   2篇
  完全免费   4篇
  自动化技术   8篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
一种基于RBF网络提取模糊规则的算法实现   总被引:6,自引:4,他引:2  
径向基函数网络和模糊推理系统在一些柔和的情况下具有等价的功能,因此可以利用神经网络的学习算法来调节模糊系统的参数,学习后的模糊系统具有自学习和自组织性,但是削弱了模糊系统的可解释性。将模糊逻辑推理与神经网络控制技术相结合,分析了一种改进的径向基函数(RBF)神经网络结构,这种模糊神经网络结构能够有效地表达模糊系统可解释性这一突出特点,也使模糊系统具有了较好的自学习和自组织能力、通过VC 实现了基于这种RBF网络结构提取模糊规则的算法,并进行了仿真实验,仿真结果表明该算法是比较有效的。  相似文献
2.
基于批量模糊学习矢量量化的模糊系统辨识   总被引:2,自引:0,他引:2  
于龙  肖建  白裔峰 《控制与决策》2007,22(8):903-906,911
提出一种基于批量模糊学习矢量量化的模糊系统辨识方法.首先通过优化方法自动调整模糊指数,使所得到的模糊规则前件隶属度函数与聚类规则得到的隶属度函数相比具有较好的可解释性;然后针对模糊系统可解释性与精度之间的困境问题,为保证参数的可理解性.利用带约束的非线性优化方法调整后件参数.并用调整参数的界评估因优化造成参数恶化的程度.仿真实验表明,利用该方法得到的模糊系统模型具有较高的透明度,满足合理的精度.  相似文献
3.
推荐系统研究综述   总被引:1,自引:0,他引:1  
近年来,推荐系统得到前所未有的关注和发展。作为电子商务的核心技术,推荐系统在帮助消费者便捷的找到所需的潜在商品同时也促进商品的销售,对于消费者和商品生产者来说都至关重要。推荐系统可以利用用户的行为信息、社交网络信息、标签数据等来提升推荐系统的质量。随着推荐系统的快速发展,如何评价推荐系统以及如何提高推荐系统的可解释性也成为热门的研究课题。从推荐算法、评测指标和可解释性三个部分对推荐系统的研究现状进行分析总结。  相似文献
4.
基于结构风险最小化的加权偏最小二乘法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了在偏最小二乘法(PLS)建模过程中实现结构风险最小化(SRM),提出基于结构风险最小化的加权偏最小二乘法(WPLS)。WPLS先提取训练样本中的主元,然后使用支持向量机(SVM)训练算法计算训练样本权值,最后计算原始论域中的回归模型。该算法保留了PLS能有效地提取对系统解释性最强的信息的优点,并通过样本权值提高模型的泛化能力,从而实现SRM准则,所建立的模型具有可解释性。仿真计算证明了模型的有效性。  相似文献
5.
针对神经网络在学习之后,模糊系统的原始结构被改变,或削弱了规则可解释性这一模糊系统突出特点的问题,给出了一种提取模糊If-then规则的径向基函数(RBF)神经网络结构。该神经网络结构具有能够同时清晰表达模糊控制系统输入空间划分和模糊规则可解释性的特点,克服了以往用神经网络提取模糊规则不能直观体现模糊语言规则可解释性的不足,并详细地讨论了此网络结构参数的设计方法。  相似文献
6.
周塔  邓赵红  蒋亦樟  王士同 《软件学报》2019,30(12):3637-3650
虽然Takagi-Sugeno-Kang (TSK)模糊分类器在一些重要场合已经取得了广泛应用,但如何提高其分类性能和增强其可解释性,仍然是目前的研究热点.提出一种随机划分与组合特征且规则具有高可解释性的深度TSK模糊分类器(RCC-DTSK-C),但和其他分类器构造不同的是:(1) RCC-DTSK-C由很多基训练单元构成,这些基训练单元可以被独立训练;(2)每一个基训练单元的隐含层通过模糊规则的可解释性来表达,而这些模糊规则又是通过随机划分、随机组合来进行特征选择的;(3)基于栈式结构理论,源数据集作为相同的输入空间被映射到每一个独立的基训练单元中,这样就有效地保证了源数据的所有特征在每一个独立的训练单元中都得以保留.实验结果表明,RCC-DTSK-C具有良好的分类性能和可解释性.  相似文献
7.
为了缓解神经网络的“黑盒子”机制引起的算法可解释性低的问题,基于使用证据推理算法的置信规则库推理方法(以下简称RIMER)提出了一个规则推理网络模型.该模型通过RIMER中的置信规则和推理机制提高网络的可解释性.首先证明了基于证据推理的推理函数是可偏导的,保证了算法的可行性;然后,给出了规则推理网络的网络框架和学习算法,利用RIMER中的推理过程作为规则推理网络的前馈过程,以保证网络的可解释性;使用梯度下降法调整规则库中的参数以建立更合理的置信规则库,为了降低学习复杂度,提出了“伪梯度”的概念;最后,通过分类对比实验,分析了所提算法在精确度和可解释性上的优势.实验结果表明,当训练数据集规模较小时,规则推理网络的表现良好,当训练数据规模增大时,规则推理网络的也能达到令人满意的结果.  相似文献
8.
魏霖静  练智超  王联国  侯振兴 《计算机科学》2016,43(12):229-233, 259
已有的文本聚类算法大多基于一般的相似性度量而忽略了语义内容,对此提出一种基于最大化文本判别信息的文本聚类算法。首先,分别分析词条对其类簇与其他类簇的判别信息,并且将数据集从输入空间转换至差异分数矩阵空间;然后,设计了一个贪婪算法来筛选矩阵每行的低分数词条;最终,采用最大似然估计对文本差别信息进行平滑处理。仿真实验结果表明,所提方法的文档聚类质量优于其他分层与单层聚类算法,并且具有较好的可解释性与收敛性。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号