首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  国内免费   2篇
  完全免费   21篇
  自动化技术   41篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   3篇
  2012年   8篇
  2011年   5篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
多核学习方法   总被引:20,自引:2,他引:18       下载免费PDF全文
多核学习方法是当前核机器学习领域的一个新的热点. 核方法是解决非线性模式分析问题的一种有效方法, 但在一些复杂情形下, 由单个核函数构成的核机器并不能满足诸如数据异构或不规则、样本规模巨大、样本不平坦分布等实际的应用需求, 因此将多个核函数进行组合, 以获得更好的结果是一种必然选择. 本文根据多核的构成, 从合成核、多尺度核、无限核三个角度, 系统综述了多核方法的构造理论, 分析了多核学习典型方法的特点及不足, 总结了各自的应用领域, 并凝炼了其进一步的研究方向.  相似文献
2.
基于多核集成的在线半监督学习方法   总被引:2,自引:1,他引:1  
在很多实时预测任务中,学习器需对实时采集到的数据在线地进行学习.由于数据采集的实时性,往往难以为采集到的所有数据提供标记.然而,目前的在线学习方法并不能利用未标记数据进行学习,致使学得的模型并不能即时反映数据的动态变化,降低其实时响应能力.提出一种基于多核集成的在线半监督学习方法,使得在线学习器即使在接收到没有标记的数据时也能进行在线学习.该方法采用多个定义在不同RKHS中的函数对未标记数据预测的一致程度作为正则化项,在此基础上导出了多核集成在线半监督学习的即时风险函数,然后借助在线凸规划技术进行求解.在UCl数据集上的实验结果以及在网络入侵检测上的应用表明,该方法能够有效利用数据流中未标记数据来提升在线学习的性能.  相似文献
3.
弹性多核学习   总被引:1,自引:0,他引:1       下载免费PDF全文
多核学习 (MKL) 的提出是为了解决多个核矩阵的融合问题, 多核学习求解关于多个核矩阵的最优的线性组合并同时解出对应于这个组合矩阵的支持向量机(SVM)问题. 现有的多核学习的框架倾向于寻找稀疏的组合系数, 但是当有信息的核的比例较高的时候, 对稀疏性的倾向会使得只有少量的核被选中而损失相当的分类信息. 在本文中, 我们提出了弹性多核学习的框架来实现自适应的多核学习. 弹性多核学习的框架利用了一个混合正则化函数来均衡稀疏性和非稀疏性, 多核学习和支持向量机问题都可以视作弹性多核学习的特殊情形. 基于针对多核学习的梯度下降法, 我们导出了针对弹性多核学习的梯度下降法. 仿真数据的结果显示了弹性多核学习方法相对多核学习和支持向量机的优势; 我们还进一步将弹性多核学习应用于基因集合分析问题并取得了有意义的结果; 最后, 我们比较研究了弹性多核学习与另一种利用了非稀疏思想的多核学习.  相似文献
4.
基于多核学习的医学文献蛋白质关系抽取   总被引:1,自引:0,他引:1       下载免费PDF全文
从生物医学文献中抽取蛋白质交互作用关系对蛋白质知识网络的建立、新药的研制等均具有重要的意义。为此,提出一种基于多核学习的方法,用于从文献中自动抽取蛋白质关系信息。该方法融合基于特征的核、树核以及图核,并扩展最短路径依存树以及依存路径以利用更多的上下文关系信息。在AImed语料上的实验得到63.9%的F值和87.83%的AUC值,表明该方法具有较好的性能。  相似文献
5.
基于多核学习的双稀疏关系学习算法   总被引:1,自引:1,他引:0  
在关系学习中样本无法在R n空间中表示.与其他机器学习问题有很大不同,因为无法利用R n空间的几何结构使得其解决异常困难.将多核学习方法用于关系学习中. 首先,可以证明当用逻辑规则生成的核矩阵进行多核学习时,其他核都可以等价转化为线性核.在此基础上,通过用修正FOIL算法迭代生成规则,构造相应的线性核然后进行多核优化,由此实现了由规则诱导出的特征空间上的线性分类器.算法具有"双稀疏"特性,即:可以同时得到支持向量和支持规则.此外,可以证明在规则诱导出的特征空间上的多核学习可以转化为平方l1 SVM,这是首次提出的新型SVM算法.在6个生物化学和化学信息数据集上与其他算法进行了对比实验.结果表明不仅预测准确率有明显提高,而且得到的规则集数目更小,解释更为直接.  相似文献
6.
根据文本分类通常包含多异类数据源的特点,提出了多核SVM学习算法。该算法将分类核矩阵的二次组合重新表述成半无限规划,并说明其可以通过重复利用SVM来实现有效求解。实验结果表明,提出的算法可以用于数百个核的结合或者是数十万个样本的结合,对于多异类数据源的文本分类具有较高的查全率和查准率。  相似文献
7.
识别虚假评论有着重要的理论意义与现实价值。先前工作集中于启发式策略和传统的全监督学习算法。最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理。容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能。基于少量的真实评论和大量的未标注评论,提出一种创新的PU (positive and unlabeled)学习框架来识别虚假评论。首先,从无标注数据集中识别出少量可信度较高的负例。其次,通过整合LDA(latent Dirichlet allocation)和 K‐means ,分别计算出多个代表性的正例和负例。接着,基于狄利克雷过程混合模型(Dirichlet process mixture model , DPM M ),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签。最后,多核学习算法被用来训练最终的分类器。数值实验证实了所提算法的有效性,超过当前的基准。  相似文献
8.
现有的多核学习算法大多假设训练样本分类完全正确,将其应用到受扰分类样本上时,由于分类存在差错,因此往往只能实现次优性能.为了解决这一问题,首先将受扰分类多核学习问题建模为随机规划问题,并得到一种极小极大表达式;然后提出基于复合梯度映射的一阶学习算法对问题进行求解.理论分析表明,该算法的收敛速度为O(1/T),大大快于传统算法的收敛速度O(1/√T).最后,基于五个UCI数据集的实验结果也验证了本文观点和优化算法的有效性.  相似文献
9.
针对不同特征向量下选择最优核函数的学习方法问题,将多核学习支持向量机(MK-SVM)应用于音乐流派自动分类中,提出了将最优核函数进行加权组合构成合成核函数进行流派分类的方法.多核分类学习能够针对不同的声学特征采用不同的最优核函数,并通过学习得到各个核函数在分类中的权重,从而明确各声学特征在流派分类中的权重,为音乐流派分类中特征向量的分析和选择提供了一个清晰、明确的结果.在ISMIR 2011竞赛数据集上验证了提出的基于多核学习支持向量机(MKL-SVM)的分类方法,并与传统的基于单核支持向量机的方法进行了比较分析.实验结果表明基于MKL-SVM的音乐流派自动分类准确率比传统单核支持向量机的分类准确率提高了6.58%,且该方法与传统的特征选择结果比较,更清楚地解释了所选择的特征向量对流派分类的影响大小,通过选择影响较大的特征组合进行分类,分类结果也有了明显的提升.  相似文献
10.
提出一种基于改进多核学习的语音情感识别算法.算法以高斯径向基核函数为基准,通过采样不同的样本,采用不同的评价标准并获得不同的参数,来提高分类性能.此外,通过引入多核技术,将得到的高斯核函数构建多核学习的基核,并通过利用松弛因子构建的软间隔多核学习的目标函数改善了学习效率.对比仿真实验结果表明,本文提出的基于多核学习语音情感识别算法有效提高了语音情感识别性能.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号