首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  完全免费   1篇
  自动化技术   6篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
X3D室内三维立体场景设计是利用X3D虚拟现实语言的几何节点、背景节点、模型节点、空间变换节点、内联节点以及动态感知节点等,设计出了生动、鲜活、逼真的三维立体室内场景造型。X3D虚拟现实技术是目前计算机领域最前沿科技,是21世纪初在国内外刚刚兴起的一种新型语言,其发展前景十分广阔,潜力巨大。  相似文献
2.
富士F系列DC是其数码相机产品中的旗舰级机型,因此可以想见F系列的数码相机一定会集成富士最新的技术研发成果和尽可能强劲的功能部件。以前F系列的数码相机比较多的是主打高感牌,比较适合拍摄夜景或室内场景较多的用户。而一次全新亮相的的FinePix F305EXR数码相机则是以堪比数码单反相机的快速对焦作为金字招牌,可以说是一个影像的高速捕捉能手!  相似文献
3.
庄严  卢希彬  李云辉 《自动化学报》2011,37(10):1232-1240
研究了移动机器人在室内三维环境中的场景认知问题.室内场景框架具有结构化特性,而室 内多样化的物体则难以进行模型化表述. 本文利用区域扩张算法进行平面特征的提取,并根据平面属性及其相互间的空间关系,完成室 内场景框架的辨识.为了借鉴图像处理领域的物体识别方法, 本文提出一种基于Bearing Angle模型的激光测距数据表述方法,从而将三维点云数据转换为二维Bearing Angle图. 同一类物体中的个体形态具有多样性,同时观测视角也导致激光测距数据的显著差异.针对这些 问题,采用一种基于Gentleboost算法的有监督学习方法, 并利用物体碎片及其相对于物体中心的位置作为特征,从而完成室内场景中的物体认知. 利用室内场景框架辨识结果在Bearing Angle图中进行天棚、地面、墙壁、房门等区域的标记,并利用所产生的语义信息去除错误的认知结果,从而有助于提高识别率. 利用实际机器人平台所获得的实验结果验证了所提方法的有效性.  相似文献
4.
场景分类的目标是为各种视觉处理任务建立语义上下文,尤其是为目标识别。双目视觉系统现已广泛配备在智能机器人上,然而场景分类的任务大多只是使用单目图像。由于室内场景的复杂性,使用单目图像进行场景分类的性能很低。提出了一种基于双目视觉的室内场景分类方法,使用在一些特定区域里拟合出的若干平面的参数作为场景的特征。采用层级的分类方法,依据视差图,场景被分为开放场所类和封闭场所类,利用提出的场景特征和Gist特征对上述两类进行细分。为了验证提出的方法,建立了一个包含四种场景类别的图像数据集。实验结果表明提出的方法取得了较好的分类性能。  相似文献
5.
基于深度图像的室内场景理解是计算机视觉领域中的前沿问题。针对三维室内场景中平面较多的特性,提出一种基于高斯混合模型聚类的深度数据分割方法,实现对场景数据的平面提取。首先将Kinect获取的深度图像数据转换为离散三维数据点云,并对点云数据作去噪和采样处理;在此基础上计算所有点的法向量,利用高斯混合模型对整个三维点云的法向集合聚类,然后利用随机抽样一致性算法对各个聚类进行平面拟合,由每个聚类得到若干平面,最终把整个点云数据分割为一些平面的集合。实验结果表明,该方法得到的分割区域边界准确,分割质量较高。提取出的平面集合为以后的室内对象识别和场景理解工作奠定了较好的基础。  相似文献
6.
在视频处理中,由于运动阴影具有与运动前景相同的特性,当在提取前景时,会误把阴影检测为前景.特别是当阴影和其它前景发生粘连时,这可能会严重地影响跟踪、识别等后续处理.该文提出了一种用于运动阴影检测的Boosting判别模型.这种方法先利用Boosting在不同的特征空间来区分前景和阴影,然后在判别随机场(DRFs)中结合前景和阴影的时空一致性,实现对前景和阴影的分割.首先,差分前图像与背景图像得到颜色不变子空间和纹理不变子空间;然后在这两个子空间上应用Boosting来区分前景和阴影;最后利用前景和阴影的时空一致性,在判别随机场中通过图分割的方法准确地分割前景和阴影.实验结果表明,无论是在室内场景,还是在室外场景,该文的方法要好于传统的方法.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号