首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   7篇
  自动化技术   10篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 109 毫秒
1
1.
生成式对抗网络GAN的研究进展与展望   总被引:2,自引:0,他引:2       下载免费PDF全文
生成式对抗网络GAN(Generative adversarial networks)目前已经成为人工智能学界一个热门的研究方向.GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练.目的是估测数据样本的潜在分布并生成新的数据样本.在图像和视觉计算、语音和语言处理、信息安全、棋类比赛等领域,GAN正在被广泛研究,具有巨大的应用前景.本文概括了GAN的研究进展,并进行展望.在总结了GAN的背景、理论与实现模型、应用领域、优缺点及发展趋势之后,本文还讨论了GAN与平行智能的关系,认为GAN可以深化平行系统的虚实互动、交互一体的理念,特别是计算实验的思想,为ACP(Artificial societies,computational experiments,and parallel execution)理论提供了十分具体和丰富的算法支持.  相似文献
2.
孙全  曾晓勤 《计算机科学》2018,45(12):229-234, 261
针对现有图像修复算法存在受损区域的形状和大小受限以及修复痕迹明显、修复边缘不连续的问题,文中提出一种基于生成对抗网络的图像修复方法。该方法采用生成对抗网络(Generative Adversarial Networks,GAN)这种新的生成模型作为基本架构,结合Wasserstein距离,同时融入条件对抗网络(CGAN)的思想;以破损图像作为附加条件信息,采用对抗损失与内容损失相结合的方式来训练网络模型,以修复破损区域。此方法能够修复大多数破损情况下的图像。在CelebA和LFW两个数据集上的实验结果表明,所提方法能够取得很好的修复效果。  相似文献
3.
小目标检测长期以来是计算机视觉中的一个难点和研究热点。在深度学习的驱动下,小目标检测已取得了重大突破,并成功应用于国防安全、智能交通和工业自动化等领域。为了进一步促进小目标检测的发展,本文对小目标检测算法进行了全面的总结,并对已有算法进行了归类、分析和比较。首先,对小目标进行了定义,并概述小目标检测所面临的挑战。然后,重点阐述从数据增强、多尺度学习、上下文学习、生成对抗学习以及无锚机制等方面来提升小目标检测性能的方法,并分析了这些方法的优缺点和关联性。之后,全面介绍小目标数据集,并在一些常用的公共数据集上对已有算法进行了性能评估。最后本文对小目标检测技术的未来发展方向进行了展望。  相似文献
4.
在机器翻译任务中,输入端的一些微小的干扰信息,可能引起NMT的模型翻译性能的下降。该文提出了一种融入对抗学习的神经机器翻译方法。给出一个源句子序列,构造了一个将源句子添加了微小噪声的新序列,并且两者的语义相近。然后把这两个序列交由编码器处理,产生各自的向量表示;并将处理结果交给判别器和解码器做进一步处理,最后比较加入噪声前后的翻译性能。实验表明,在多个语言对的翻译任务上,使用该模型的方法不仅提升了翻译性能,而且对噪声输入也表现出了鲁棒性。  相似文献
5.
《计算机工程》2019,(9):222-234
基于零和博弈思想的生成式对抗网络(GAN)可通过无监督学习获得数据的分布,并生成较逼真的数据。基于GAN的基础概念及理论框架,研究各类GAN模型及其在特定领域的应用情况,从数据相似性度量、模型框架、训练方法3个方面进行分析,对GAN改进与扩展的相关研究成果进行总结,并从图像合成、风格迁移等应用领域展开讨论,归纳出GAN的优势与不足,同时对其应用前景进行展望。分析结果表明,GAN的学习能力与可塑性强,改进潜力大,应用范围广,但其发展面临的挑战是训练过程不稳定,且缺乏生成数据质量的客观评价标准。  相似文献
6.
在多Agent系统中,通过学习可以使Agent不断增加和强化已有的知识与能力,并选择合理的动作最大化自己的利益.但目前有关Agent学习大都限于单Agent模式,或仅考虑Agent个体之间的对抗,没有考虑Agent的群体对抗,没有考虑Agent在团队中的角色,完全依赖对效用的感知来判断对手的策略,导致算法的收敛速度不高.因此,将单Agent学习推广到在非通信群体对抗环境下的群体Agent学习.考虑不同学习问题的特殊性,在学习模型中加入了角色属性,提出一种基于角色跟踪的群体Agent再励学习算法,并进行了实验分析.在学习过程中动态跟踪对手角色,并根据对手角色与其行为的匹配度动态决定学习速率,利用minmax-Q算法修正每个状态的效用值,最终加快学习的收敛速度,从而改进了Bowling和Littman等人的工作.  相似文献
7.
由于多模态数据的快速增长,跨模态检索受到了研究者的广泛关注,其将一种模态的数据作为查询条件检索其他模态的数据,如用户可以用文本检索图像或/和视频。由于查询及其检索结果模态表征的差异,如何度量不同模态之间的相似性是跨模态检索的主要挑战。随着深度学习技术的推广及其在计算机视觉、自然语言处理等领域的显著成果,研究者提出了一系列以深度学习为基础的跨模态检索方法,极大缓解了不同模态间相似性度量的挑战,本文称之为深度跨模态检索。本文从以下角度综述有代表性的深度跨模态检索论文,基于所提供的跨模态信息将这些方法分为3类:基于跨模态数据间一一对应的、基于跨模态数据间相似度的以及基于跨模态数据语义标注的深度跨模态检索。一般来说,上述3类方法提供的跨模态信息呈现递增趋势,且提供学习的信息越多,跨模态检索性能越优。在上述不同类别下,涵盖了7类主流技术,即典型相关分析、一一对应关系保持、度量学习、似然分析、学习排序、语义预测以及对抗学习。不同类别下包含部分关键技术,本文将具体阐述其中有代表性的方法。同时对比提供不同跨模态数据信息下不同技术的区别,以阐述在提供了不同层次的跨模态数据信息下相关技术的关注点与使用异同。为评估不同的跨模态检索方法,总结了部分代表性的跨模态检索数据库。最后讨论了当前深度跨模态检索待解决的问题以及未来的研究方向。  相似文献
8.
目的 在高分辨率遥感图像场景识别问题中,经典的监督机器学习算法大多需要充足的标记样本训练模型,而获取遥感图像的标注费时费力。为解决遥感图像场景识别中标记样本缺乏且不同数据集无法共享标记样本问题,提出一种结合对抗学习与变分自动编码机的迁移学习网络。方法 利用变分自动编码机(variational auto-encoders,VAE)在源域数据集上进行训练,分别获得编码器和分类器网络参数,并用源域编码器网络参数初始化目标域编码器。采用对抗学习的思想,引入判别网络,交替训练并更新目标域编码器与判别网络参数,使目标域与源域编码器提取的特征尽量相似,从而实现遥感图像源域到目标域的特征迁移。结果 利用两个遥感场景识别数据集进行实验,验证特征迁移算法的有效性,同时尝试利用SUN397自然场景数据集与遥感场景间的迁移识别,采用相关性对齐以及均衡分布适应两种迁移学习方法作为对比。两组遥感场景数据集间的实验中,相比于仅利用源域样本训练的网络,经过迁移学习后的网络场景识别精度提升约10%,利用少量目标域标记样本后提升更为明显;与对照实验结果相比,利用少量目标域标记样本时提出方法的识别精度提升均在3%之上,仅利用源域标记样本时提出方法场景识别精度提升了10%~40%;利用自然场景数据集时,方法仍能在一定程度上提升场景识别精度。结论 本文提出的对抗迁移学习网络可以在目标域样本缺乏的条件下,充分利用其他数据集中的样本信息,实现不同场景图像数据集间的特征迁移及场景识别,有效提升遥感图像的场景识别精度。  相似文献
9.
目的 如何提取与个体身份无关的面部特征以及建模面部行为的时空模式是自发与非自发表情识别的核心问题,然而现有的自发与非自发表情识别工作尚未同时兼顾两者。针对此,本文提出多任务学习和对抗学习结合的自发与非自发表情识别方法,通过多任务学习和对抗学习捕获面部行为的时空模式以及与学习身份无关的面部特征,实现有效的自发与非自发表情区分。方法 所提方法包括4部分:特征提取器、多任务学习器、身份判别器以及多任务判别器。特征提取器用来获取与自发和非自发表情相关的特征;身份判别器用来监督特征提取器学习到的特征,与身份标签无关;多任务学习器预测表情高峰帧相对于初始帧之间的特征点偏移量以及表情类别,并试图迷惑多任务判别器;多任务判别器辨别输入是真实的还是预测的人脸特征点偏移量与表情类别。通过多任务学习器和多任务判别器之间的对抗学习,捕获面部行为的时空模式。通过特征提取器、多任务学习器和身份判别器的协同学习,学习与面部行为有关而与个体身份无关的面部特征。结果 在MMI(M&M initiative)、NVIE(natural visible and infrared facial expression)和BioVid(biopotential and video)数据集上的实验结果表明本文方法可以学习出与个体身份相关性较低的特征,通过同时预测特征点偏移量和表情类别,有效捕获自发和非自发表情的时空模式,从而获得较好的自发与非自发表情识别效果。结论 实验表明本文所提出的基于对抗学习的网络不仅可以有效学习个体无关但表情相关的面部中特征,而且还可以捕捉面部行为中的空间模式,而这些信息可以很好地改善自发与非自发表情识别。  相似文献
10.
在机器翻译模型的构建和训练阶段, 为了缓解因端到端机器翻译框架在训练时采用最大似然估计原理导致的翻译模型的质量不高的问题, 本文使用对抗学习策略训练生成对抗网络, 通过鉴别器协助生成器的方式来提高生成器的翻译质量, 通过实验选择出了更适合生成器的机器翻译框架Transformer, 更适合鉴别器的卷积神经网络, 并且验证了对抗式训练对提高译文的自然度、流利度以及准确性都具有一定的作用. 在模型的优化阶段, 为了缓解因蒙汉平行数据集匮乏导致的蒙汉机器翻译质量仍然不理想的问题, 本文将Dual-GAN (dual-generative adversarial networks, 对偶生成对抗网络)算法引入了蒙汉机器翻译中, 通过有效的利用大量蒙汉单语数据使用对偶学习策略的方式来进一步提高基于对抗学习的蒙汉机器翻译模型的质量.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号